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ABSTRACT

This thesis describes the analysis of the reentry dynamics of a high-performance lifting

atmospheric entry vehicle through numerical simulation tools. The vehicle, named

SHARP, is currently being developed by the Thermal Protection Materials and Systems

branch of NASA Ames Research Center, Moffett Field, California. The goal of this

project is to provide insight into trajectory tradeoffs and vehicle dynamics using

simulation tools that are powerful, flexible, user-friendly and inexpensive. Implemented

using MATLAB and SIMULINK, these tools are developed with an eye towards further use

in the conceptual design of the SHARP vehicle's trajectory and flight control systems.

A trajectory simulator is used to quantify the entry capabilities of the vehicle subject to

various operational constraints. Using an aerodynamic database computed by NASA and

a model of the earth, the simulator generates the vehicle trajectory in three-dimensional

space based on aerodynamic angle inputs. Requirements for entry along the SHARP

aerothermal performance constraint are evaluated for different control strategies. Effect

of vehicle mass on entry parameters is investigated, and the cross range capability of the

vehicle is evaluated. Trajectory results are presented and interpreted.

A six degree of freedom simulator builds on the trajectory simulator and provides attitude

simulation for future entry controls development. A Newtonian aerodynamic model

including control surfaces and a mass model are developed. A visualization tool for

interpreting simulation results is described. Control surfaces are roughly sized. A simple

controller is developed to fly the vehicle along its aerothermal performance constraint

using aerodynamic flaps for control. This end-to-end demonstration proves the suitability

of the 6-DOF simulator for future flight control system development.

Finally, issues surrounding real-time simulation with hardware in the loop are discussed.
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CHAPTER 2:

SIMULATOR COMPONENT SELECTION

The requirements leading to the selection of the software and hardware necessary to build

the simulation tools are explored. Primarily this consists of using an aerodynamic

database for SHARP, provided by NASA, to determine the expected bandwidth of the

simulation system. The results of this analysis motivate the choice of commercial off-

the-shelf software and hardware for building the simulation tools.

2. I Bandwidth Requirement Estimation

Dynamical bandwidth plays a critical role in the design of a simulator where real-time

capability is desired. In order to ensure meaningful and accurate results, the recalculation

frequency of the simulation must be significantly above the maximum frequency in the

dynamics of the vehicle being simulated. These dynamics must therefore be the subject of

a preliminary investigation before frequency requirements can be set for the simulation

system.

2.1.1 Longitudinal Vehicle Dynamics

The approach used to analyze the dynamics of the SHARP vehicle is the same as

commonly used for any aircraft. The aim is to calculate the frequency of the fastest

natural mode of the vehicle under the range of expected flight conditions. From

experience, the fastest mode is expected to be the short-period pitch oscillation. A non

real-time simulation where the simulator bandwidth is not a constraint (see Chapter 4)
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later confirms this, allowing a numerically accurate determinationof the vehicle

dynamics.

In the short-periodpitch mode,the vehicle'sangleof attacka_ exhibits simple harmonic

motion about some equilibrium pitch, which we take to be zero. The vehicle could also

oscillate about some non-zero pitch trimmed equilibrium, but this produces essentially

the same motion.

In this analysis pitch damping can be neglected, as is shown next. The perturbation to the

angle of attack that is induced by the rotation of the body is given by

tana, =at/V.,

where l is the vehicle length and V** is the flee stream velocity. In hypersonic flight of a

small body, where l is small and V** is large, we have a_ << or. The aerodynamic forces

induced by pitch rotation are therefore negligible, compared to other forces such as the

restoring force from which the harmonic motion arises. The short-period pitch motion

can thus he realistically modeled as an undamped simple harmonic oscillator,

ly_+c_=O.

The pitch moment-of-inertia Iy is estimated from the vehicle characteristics, and is

computed in Appendix A. The constant c relates the restoring torque to 5, and depends

on the aerodynamic properties of the vehicle and the dynamic pressure.

The NASA-provided aerodynamic database for the SHARP vehicle geometry is used to

compute a numerical value of c for any given flight condition. The database gives the lift

and drag coefficients CL and Co, as well as the location of the center of pressure (where

the lift and drag forces act) for any flight condition, as defined by the free stream Mach

number M**, dynamic pressure q, and the vehicle angle of attack ct. Knowing the location

of the vehicle center of gravity, the database is used to compute the total aerodynamic

force on the vehicle and its moment arm about the center of gravity. For any value of M_,

and q, a plot of the pitching moment versus ct is constructed, and the proportionality

constant c is determined by fitting a straight line to the data through the origin. Using

14



MATLAB[MathWorks 1997], this technique gives a numerical value for c over a range of

M** and q. An example of a pitch torque plot is shown in Figure 2-1.

The pitch oscillation frequency _ is given by

This result allows us to produce a contour plot of the pitch frequency as a function of

Mach number and dynamic pressure. The result is shown in Figure 2-2.
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Linear1Rti_ "''''''''"
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Figure 2-1: Pitching moment (example)

Under real operating conditions not every combination of Math number and dynamic

pressure can be attained. In particular, thermal considerations limit the possible velocity

at any given altitude, and structural constraints limit the allowable dynamic pressure to

43000 N/m 2. Thus, several regions of the plot that lie outside of the flight envelope can

be immediately excluded from consideration. The thermal limit, or aerothermal

performance constraint (APC), is discussed in more detail in Chapter 3, as is the choice

of dynamic pressure constraint.
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Figure 2-2: Short-period pitch frequency (Hz)

The APC is given in velocity-altitude, or (V=, h) coordinates. A coordinate

transformation performed on the NASA-provided APC data allows expressing it instead

in free stream Mach number-dynamic pressure, or (M.., q) coordinates. To do this,

atmospheric density p (h) and sound speed a(h) are looked up for a given altitude h using

the 1976 US Standard Atmosphere [NOAA 1976]. Thus, M_,(V,,, h) and q(V,,,,, h) can be

obtained. The resulting transformed APC is overlaid on Figure 2-2.

The constraints delimit an area of Figure 2-2, below the constraint curves, that describes

the flight envelope of the vehicle. Within this area the fastest longitudinal mode lies at

approximately 2.5 Hz, a condition achieved at low speed and high dynamic pressure. For

most of the flight conditions of interest the frequency is even lower.

Taking into account an appropriate margin and over-sampling rate, the requirement for

the simulator is set at 30 Hz. This value provides adequate capability for accurately

simulating the dynamics of the vehicle in real time. This value suggests the task is

feasible using affordable off-the-shelf hardware and software.
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2.2 Software Selection

Commercial off-the-shelf packages were favored over hand coding the simulation

software, for reasons of time, cost and performance. Several powerful and full-featured

off-the-shelf software packages are available for performing simulation. One of these is

SIMULINK [MathWorks 1997]. SIMULINK is an interactive environment for modeling and

simulating a wide variety of dynamic systems, including linear, non-linear, discrete-time,

continuous-time, and hybrid systems. It combines the power and ease of use of an

application package with the flexibility and extensibility of a language. Combined with

the computation package MATLAB [MathWorks 1997], SIMULINK provides an ideal

integrated environment for developing the simulation tools for SHARP. The reasons for

choosing SIMt:U¢,_ were:

• Ease of use. SIMULINK provides an intuitive visual interface where the user can click-

and-drag components to assemble models in the familiar block diagram form.

Affordability. SIMUIANK is widely available and can run on inexpensive personal

computers. StMUtaNK models can also be run on high power workstations with little

or no modification.

Extensibility. SIMULINK models can he extended and modified at will with very little

difficulty. If the model had been hand-coded directly in a computer language the

desired modularity would have been difficult and time-consuming to provide.

Power. SIMUtaNK has built-in integration schemes that are efficient and optimized.

These schemes would have been difficult and time-consuming to implement in a fully

custom simulator. The wide array of linear and non-linear capabilities built into

SIMULINK insulates the user from the numerical complexity of solving a large model.

Interface to MATLAB. Computations performed in the familiar MATI_.AB environment

can be integrated into a StMULtt'_K model. This is an important capability in situations

where the block diag'ram representation is not the most intuitive way to perform the

desired computation. In addition, output data from the model can he displayed using

MATLAB'S powerful visualization capabilities.
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Interfaceto Toolboxes.SIMULINKandMATLAr_cangainadditionalcapabilitiesfrom

widely availableexternalsoftwarecomponents.These"toolboxes"includethe Real

Time Toolbox [Humusoft 1997]. This toolbox seamlesslyinterfaces a data

acquisitionboardto the simulationsoftware,enablingsimulationparametersto be

passedto and from a physicalsystemoutsideof the simulationhostcomputer. The

hardwarein the loop capabilitythusafforded,while limited, is inexpensiveandeasy

to implement. Shouldbetterhardwarein the loop performancebecomenecessary,

packagessuchasRealTime Workshop[MathWorks1997]cangeneratenativecode

from a SIMULINK model for any target embedded processor.

2.3 Hardware Selection

The hardware choice for the simulation system is largely constrained by the funds

avialable for this research. The simulation host computer is a Pentium PC running

Windows 95 at 150 MHz. This computer is pre-existing SSDL equipment and was not

originally purchased as a simulation computer. With rapid progress in processor speed

and power, the simulation can run faster as better hardware becomes available. The

choice of StMUUNK, a widely used product, ensures that simulation software capability

will follow future improvements in hardware capability.

There are several approaches for hardware in the loop, real time simulation. Typically

they require powerful, custom-developed hardware; however, there has been success in

6-DOF hardware in the loop simulation using only low-performance PC hardware [Sims

1996]. Without knowing in advance the chances of success, a relatively low-performance

but inexpensive system was selected and purchased. This includes the Real Time

Toolbox (described in section 2.2) and a simple Data Translation data acquisition board.

This board features eight 12-bit analog to digital converters, two 12-bit digital to analog

converters, and sixteen digital I/O lines. The limited number of D/A channels is a

concern, since more than two analog output signals are required to drive external

hardware. This issue and other real-time simulation concerns are addressed in Chapter 5.
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CHAPTER 3: TRAJECTORY SIMULATION

The trajectory simulator, using NASA-provided vehicle aerodynamics data, is used to

evaluate the characteristics of certain mission scenarios. In each case the simulator

provides some relevant parameter or insight for the trajectory considered. In particular,

the capability for generating the aerodynamic angle profiles required to follow any

desired trajectory in velocity-altitude space proves flexible and useful. The simulator

generates the vehicle trajectory in three-dimensional space based on aerodynamic angle

inputs. Depending on its configuration, the simulator computes four or five degrees of

freedom: three position variables and either or both of angle of attack and roll angle. The

simulator is not limited to the SHARP vehicle or Earth entry, as different vehicle

databases and planetary characteristics can easily be substituted.

3. 1 Simulator Implementation

3.1.1 Architecture

The trajectory simulator was built in the SIMULINK graphical environment [MathWorks

1997]. The function of the simulator is to compute forces on the vehicle and to step

forward in time using Newton's second law, F = ma. The result of the computation is the

motion of the vehicle in three dimensions and the associated aerodynamic angle histories.

The architecture of the simulator is as follows. For a given flight condkion, aerodynamic

forces on the vehicle (i.e. the lift and drag coefficients CL and Co) are calculated via a

three-dimensional table lookup on angle of attack a, dynamic pressure q, and free stream
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MachnumberM_. The table used for this purpose was constructed from NASA-provided

aerodynamic data specific to the SHARP vehicle geometry [Kolodziej 1997]. Through a

series of coordinate transformations, the net acceleration experienced by the vehicle (due

to lift, drag and gravity) is calculated in inertial space, and integrated twice to compute

inertial velocity and position. These quantities, along with aerodynamic angle inputs, are

used to determine the new flight condition. The overall cycle is depicted in Figure 3-1.

Advance with
F=m

Flight Condition

M., _, a'

Transform to
Inertial Frame

CoefficientcL,coLOokup I

Figure 3-1: Simulator architecture

Angle of attack and angle of roll (about the velocity vector) can be commanded in open

loop or based on feedback from any parameter in the model. Angle of sideslip is

assumed zero throughout.

3.1.2 Modeling Details

The earth is modeled as an oblate, rotating spheroid. For computing gravitational forces

it is considered a point mass and higher order terms of the multipole expansion of the

gravitational field are not included. Lookup tables of scale height and sound speed, based

on the 1976 US Standard Atmosphere [NOAA 1976], model the atmosphere. The

vehicle's trajectory is controlled by direct command of the aerodynamic angles, namely

angle of attack at and roll angle _. Roll angle is defined about the velocity vector and not

the body axis system. The angle of sideslip fl is assumed to be zero throughout.

Commanding angle of attack and roll angle may be effected in open loop or through

feedback controllers using other parameters in the model to compt:_ the desired angles.

This direct commanding does not model the inertia properties t;: the vehicle or any

20



sensingor actuatingdevices. Thesefeaturesare implementedin the extensionof the

trajectory simulator to six degrees of freedom, described in Chapter 4.

The three coordinate frames used in the model (inertial, earth-referenced, and free-stream

referenced) are related to each other via Euler angles. It was not deemed necessary to use

the quaternion representation because the realistic range of the various angles precludes

the gimbal lock problem.

Modeling of the thermal effects on the TPS can be included to monitor the time history of

heating rates and temperature. While these results are not accurate due to a number of

modeling assumptions, it can still be used as a qualitative metric in trajectory

optimization studies where the thermal effects (maximum heating rate and integrated heat

load) of various trajectories are compared among each other.

The time advancement scheme for the model is an adaptive-step fourth-order Runge-

Kutta scheme built into SIMULINK. A complete and detailed description of the trajectory

model and its usage, as well as a walk-through of each component, may be found in

Appendix B.

3.2 Simulator Verification

The trajectory simulator was verified by comparing with results computed on another,

unrelated simulator at Sandia National Laboratories by Dr. Larry Young [Young 1998].

While the vehicle aerodynamics data provided by NASA was the same for both models,

the Sandia model used atmospheric data specific to the Kwajalein atoll in the South

Pacific and a higher-order gravitational field.

Starting from a fixed initial condition, two different experiments were run: one at fixed

angle of attack with varying vehicle weight, and another at fixed vehicle weight with

varying angle of attack. The output parameter of interest was the pullout altitude, the

altitude at which the vehicle flight path angle goes from below horizontal to above

horizontal in a skipping trajectory. Initial conditions for the experiments are listed in the

table below.
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Longitude 169.4°
Latitude 10.3°
Altitude 60960 m

Entry angle 21.8 °

Free stream velocity 6888.5 m/s

Table 3-1: Pullout experiment initial conditions

3.2.1 Pullout Experiment 1' Effect of Vehicle Mass

In this series of simulation runs, the angle of attack of the vehicle was taken to be

constant at ten degrees and the mass was varied. The data in table 3-2 shows that the

results from the two simulations come within less than a percent of each other, thereby

validating the trajectory simulation. The small discrepancy likely arises from the

differences in the geophysical model and from the initial heading angle, which was not

known for the Sandia simulation.

Vehicle mass (kg)
90.72

Sandia pullout altitude (m)
29633

Pullout altitude (m)
29682

Difference

0.17 %

99.79 28987 29060 0.25%

108.86 28401 28480 0.28%

117.93 27863 27964 0.36%

127.00 27368 27474 0.39%

136.08 26909 27020 0.41%

145.15 26480 26608 0.48%

154.22 26080 26208 0.49%

163.29 25703 25831 0.50%

Table 3-2: Pullout experiment 1 results

3.2.2 Pullout Experiment 2: Effect of Angle of Attack

In the second series of simulation runs, the mass of the vehicle was taken to be constant

at 136 kg and the angle of attack was varied. While the Sandia simulation results were

given for angles of attack down to 0.5 degrees, this required extrapolation of the

aerodynamic data to very high dynamic pressures. Table 3-3 shows only those values for

which the flight parameters stayed within the range of the NASA aerodynamic data,
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whereacomparisonis meaningful.Onceagainthedifferentsimulationscamewithin less

thanonehalf of a percent,furtherincreasingconfidencein themodel.

Angleof attack(deg)
10.0

Sandiapulloutaltitude(m)
26909

Pulloutaltitude(m)
27020

Difference
0.41%

9.5 26542 26666 0.47%
9.0 26155 26286 0.50%
8.5 25746 25873 0.49%

Table 3-3: Pullout experiment 2 results

3.3 Simulator Applications and Results

The trajectory simulator was successfully used to investigate a series of entry scenarios as

requested by NASA. Simulation results provided key insights into the trajectory

capabilities of the SHARP vehicle.

3.3.1 Entry along Aerothermal Performance Constraint

The aerothermal performance constraint (APC) is a contour, usually displayed in

velocity-altitude space, which describes the thermal limits of a thermal protection system

(TPS). At altitudes below this constraint and for a given velocity, the thermal

performance is exceeded and the TPS is damaged or destroyed. Therefore, the entry

trajectory must not cross much below the APC. In the case of SHARP it is desirable to

fly closely along the constraint to compare actual and predicted TPS performance

[Kolodziej 1998]. The SHARP APC was provided by NASA and describes the non-

catalytic, multiple-use performance constraint of the ceramic leading edge.

In the simulation, the vehicle was assumed to start from a 400-km circular, equatorial

orbit, after effecting a 98.5 m/s maneuver to drop the perigee of the orbit into the upper

atmosphere to begin the entry. The resulting initial conditions are shown in Table 3-4:

Altitude 66446 m

Entry angle 0.452 °

Free stream velocity 7435 m/s

Table 3-4: APE entry initial conditions
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In velocity-altitudecoordinates,the desiredentry trajectory is a compositeof three

segments,beginningwith a pullout maneuverto transferfrom the incomingorbit to the

next segment,flight along the APC, followed by a transition to a constantdynamic

pressureprofile when lower altitudesare reached. Due to structuralrequirementsthe

dynamicpressureprofile wasfixed at 43000N/m2,in keepingwith typical highdynamic

pressureRLV trajectories[Windhorst 1997]. The comtx)siteentry profile, shown in

Figure 3-2, is consistent with the mission goals of the SHARP lifting entry

demonstration.
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Figure 3-2: Composite desired entry profile

A given trajectory in velocky-akitude space such as in Figure 3-2 can be flown in an

infinite number of ways. The constraint fixes the ratio of sink rate (dh/dt) to deceleration

(dv/dt), but does not dictate a particular value of sink rate or deceleration. High values of

sink rate and deceleration result in trajectories that follow the profile in a short time.

Conversely, low values of sink rate and deceleration result in trajectories that follow the

profile more slowly. Indeed, by using thrust one could stay fixed on one point in the

velocity-altitude diagram, namely at a fixed velocity and altitude, or even fly back and

forth along the entry profile.
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To identifytherangeof trajectorycapabilitiesof theSHARPvehiclein thecontextof its

missionto test the newceramicTPS, two differententriesaresimulated,bothsubjectto

theentryconstraintin Figure3-2. In thefirst, thevehicle'sroll angleis fixedat zeroand

its angleof attackis modulatedto follow theprofile. In thesecond,thevehicle'sangleof

attackis f'txedat 20degreesandits roll angleis modulatedto follow theprofile. The first

entry is flown at relatively high L/D, lasts longer, travels further, and incursa larger

integratedheat load for the TPS. The secondentry is flown at low L/D, is of much

shorterduration,andincursa lower total heatloadbut higherstructuralloads. The two

contrastingentriesdefinethe boundariesof the trajectorydesignspacefor the SHARP

vehicle geometry,given the desiredentry profile of Figure 3-2. The final choice of

trajectory for the SHARP lifting demonstrationnecessarilylies somewherein between

the two extremes. This choice is largely a matterof establishingacceptablelimits on

thermalandstructuralloads;this issueis discussedin section3.3.1.3.

3.3.1.1 High IdD Entry

The first entry, with the highest possible lift and lowest possible drag subject to the entry

profile constraint, corresponds to an entry with zero roll angle (i.e. full use of the lift

force against gravity) and modulation of the angle of attack o_ to follow the constraint.

This results in a relatively long-lasting entry and high heat loads for the TPS. In the

simulation, a was controlled in closed loop by using the altitude deviation from the

constraint as an error signal. A PID controller was used to produce an acceptably small

deviation from the constraint without excessive oscillations.

Figure 3-3 shows the resulting velocity-altitude profile, with tick marks at one-minute

intervals. When the vehicle slows below Mach 2 at the end of the trajectory, the elapsed

time is 57 minutes.

Figure 3-4 shows the altitude error in velocity-altitude space, in keeping with the

representation of the entry profile. The data shows the vehicle following the profile very

closely; the deviations can be attributed to the performance limitations of the PID

controller. The good agreement is not intended as a demonstration of controller

performance, but rather as a measure of how closely the entry trajectory follows the
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desired profile. This shows that the data for this trajectory is a valid representation of a

high lift, low drag entry along the desired profile.

Figure 3-5 shows the resulting angle of attack profile, versus elapsed time, for the entire

entry. The data shows the vehicle's o_never exceeds four degrees, less than the half-angle

of the wedge (refer to Appendix A for the SHARP vehicle geometry). This signifies that

the top surface of the wedge would be facing into the flow during the entire entry, which

could have important implications in the design and configuration of the aerodynamic

control surfaces. The pullout maneuver appears in the first 200 seconds of the plot. The

ringing is due to performance limitations of the controller in the face of sudden changes.

Ballistic (L/D = O)

500 1000 1500 2000 2500 3000 3500

Elapsed time (s)

Figure 3-5: Angle of attack profile

Figure 3-6 shows the vehicle lift-to-drag ratio as a function of elapsed time. While the

trajectory is not optimized for high L/D, the sharp wedge geometry demonstrates a

hypersonic glide performance that far exceeds that of current RLV designs. In general

for this entry the vehicle is flying at a lower than optimal a for maximum L/D, so still

greater performance is possible, subject to the constraints of total heat load. An entry

trajectory with yet higher L/D is described in section 3.3.3.
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Figure 3-6: Lift-to-drag ratio

Figure 3-7 shows the heating rate at a point halfway along the wedge aft-body on its

bottom (flow-facing) side. The heating rates are obtained by assuming Newtonian wedge

flow and radiative thermal equilibrium; for modeling details see Appendix B. The time-

integrated heat load, of interest in the design of the aft-body TPS, is 29600 joules per

square centimeter. For purposes of calculating the total integrated heat load, the tail of

the heating curve leading up to the "start" of the entry at t = 0 (i.e. the conditions of Table

3-4) is taken into account but not shown in the figure.

Figure 3-8 shows the acceleration experienced by the vehicle in the body-frame z-axis, a

good measure of structural "wing load". As expected for entries with high lift, the

loading is relatively benign with a maximum under one earth gravity.

A more complete data set for this trajectory can he found in Appendix C.
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3.3.1.2 Low IJD Entry

The second entry, with the highest possible drag subject to the entry prof'lle constraint,

corresponds to an entry with a fixed, high angle of attack and modulation of the roll angle

to follow the constraint. This results in an entry of relatively short duration with lower

integrated heat load for the TPS. In the simulation, ct was held at 20 degrees, about four

times greater than the value for maximum L/D and the maximum permissible within the

aerodynamic database. Roll angle was controlled in closed loop by using the altitude

deviation from the constraint as an error signal. As before, a PID controller was used to

produce an acceptably small deviation from the constraint without excessive oscillations.

Figure 3-9 shows the resulting entry profile, with a slightly modified pullout segment to

accommodate the high drag configuration. Tick marks at one-minute intervals indicate

that this entry is eight times faster than before, at less than seven minutes from start down

to Mach 2.

Figure 3-10 shows the altitude error, small enough throughout to consider the entry data

an accurate representation of a quick entry along the constraint.

Figure 3-11 is a plot of the time variation of the roll angle #. The APC segment is flown

with slightly less than 90 degrees roll to provide enough of a lift component. When the

vehicle transitions to constant dynamic pressure flight, the roll angle becomes inverted

(lift vector down) so that lower altitudes and higher air densities can be reached fast

enough to counteract the drag-induced rapid deceleration.

Figure 3-12 shows the aft-body-heating rate at the same location as in the previous

trajectory. As expected the time-integrated heat load of 10500 joules per square

centimeter is lower than for the previous entry, despite the much higher heating rate that

results from high-_ flight. As before the heat accumulated prior to t = 0 is taken into

account, for a fair comparison.
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Figure 3-i3 shows the acceleration experienced by the vehicle in the body-frame z-axis,

as before. The structural loads that the vehicle must withstand are much higher in this

case, reaching up to fourteen times earth gravity. This would be a significant factor in

structural design.

The ground track during this entry turns almost a full circle, since no attempt at Shuttle-

like roll reversal maneuvers was made to keep the ground track straight.

More detailed data for this trajectory can be found in Appendix C.

3.3.1.3 Trajectory Comparison and Discussion

The two trajectories described above establish the limits of the trajectory design space for

the SHARP lifting entry flight test, subject to the desired constraint in velocity-altitude

coordinates. To summarize and discuss their characteristics, it is useful to extract from

the data a few key metrics that succinctly describe each extreme. The chosen metrics are:
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• Total time of entry, from the entry interface at 66 km altitude down to Mach 2

• Integrated heat load in the middle of the windward side of the wedge aft-body

• Maximum heating rate in the middle of the windward side of the wedge aft-body

• Time spent on the APC, a good measure of the integrated heat load incurred by the

sharp leading edge (the heating calculation is not amenable to the same modeling

assumptions as for the aft-body)

• Range, the integrated length of the path of the vehicle projected on the surface of the

earth, without regard for vehicle heading.

• Maximum body z-axis acceleration, a measure of structural loading

The comparison in each metric is given in Table 3-5.

Trajectory Type

Total time of entry

Aft.body total heat load

Aft-body max. heat rate

Time spent on APC

Range

Maximum Z-Acceleration

High L/D (3.3.1.1) Low IdD (3.3.1.2)

57 minutes 7 minutes

29600 J/cm 2 10500 J/cm 2

11 W/cm 2 32 W/cm 2

45 minutes 5 minutes

18500 km 2200 km

11.5 m/s 2 135 m/s 2

Table 3-5: Trajectory comparison

The trajectory to he chosen for the SHARP lifting entry flight will fall somewhere

between these two extremes, according to the multi-disciplinary optimization to be

performed as the conceptual design of the vehicle advances. As the design matures

sufficient quantitative information will be available to construct an objective function for

the purposes of optimization. The significant differences between the two trajectories

already suggest that the choice of trajectory will have a large impact on the design of the

structure and the thermal protection system.
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To illustratethis impactfrom thepoint of view of aft-body thermalprotectionsystems,a

TPS selectionchart by Andersonand Swann[Anderson1960] is usedto interpret the

heating figures obtained for each of the two trajectories. Basedon the values of

maximumheatingrateandtotal heatloadat the locationof interest,the chart is usedto

selectthe type of TPS materialbest appliedto that locationand to estimatethe area

weightof theTPS. It is importantto rememberthat the heatingcalculationsin this case

apply not to the ceramicleadingedgediscussedbefore,but rather to a point midway

alongthebodyof theSHARPvehicleon thewindwardsurface.

The thermaldata from Figures3-7 and 3-12 (aft-bodyheatingrate) are plottedon the

chartin Figure3-14 to aid in thechoiceof TPSat the locationof interest. For the high

L/D trajectory,with its lower heatingratesbut higherintegratedheat load,a Superalloy

shieldis sufficient. In contrast,for the low L/D trajectory,with its higherheatingrates

butshorterduration,arefractorymetalTPS isappropriate.
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Figure 3-14: Radiative TPS summary (Anderson and Swann)

In both ca_es the estimated area weight of the TPS is 11 kg/m 2. The diagonal band drawn

in Figure 3-14 shows the domain of application for manned entry vehicle trajectories.
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While thechartdatesfrom 1960andTPS materials have evolved in the last four decades,

and while the thermal data calculated in the trajectory simulations is approximate, the

exercise just described shows that the trajectory design is tightly coupled with the vehicle

design.

3.3.2 Effect of Vehicle Mass on Entry Parameters

In section 3.3.1, the mass of the SHARP vehicle was assumed to be 113 kg (250 lb.).

This assumption is now relaxed and the effects of varying the vehicle mass are explored,

subject to the same entry constraint originally shown in Figure 3-2. The method of

control to fly along the constraint is the same as for the high L/D entry with zero roll

angle of section 3.3.1.1.

In general reducing the mass of the vehicle means less angle of attack is necessary to

produce the rift required for staying on the constraint, especially during the segment of

flight along the APC. This has several important implications. First, limiting the angle

of attack to be less than the half-angle of the wedge shape means the top surface of the

vehicle will always be exposed to the flow. This allows aerodynamic control surfaces on

the top surface of the vehicle (placed there because heating is less) to maintain their

control effectiveness throughout the entry, avoiding operation in the low-pressure area

created in the flow "shadow" of the vehicle. Second, the heating rate experienced by the

windward facing surface of the vehicle decreases approximately linearly with angle of

attack for a given flight condition. Finally, reducing the mass of the vehicle shortens the

total time required to perform the entry because less kinetic energy must be dissipated.

This in turn reduces total integrated heat load and TPS mass.

3.3.2.1 SHARP Vehicle

The SHARP vehicle (0.7 m2 planform area) was simulated in the same entry as in section

3.3.1.1 with a mass ranging from 68 kg to 181 kg, encompassing a comfortably wide

range of values around the 113 kg mass assumed in previous and subsequent simulations.

Figure 3-15 shows the effect of vehicle mass on the angle of attack profile. For lower

masses the maximum angle of attack is reduced and the entry time is shortened. For
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identificationof thefeaturesof the profile, comparewith Figure 3-5. Thedata in Figure

3-15 hasbeensmoothedto removeoscillationsthat occur at pullout, due to controller

limitations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Elapsed time (s)

Figure 3-15: Effect of vehicle mass on AOA profile

Figure 3-16 shows the effect of vehicle mass on the aft-body heating rate profile. For

lower masses the heating is reduced. The data in the first few seconds of the curves has

been smoothed to remove the oscillations caused by the pullout maneuver. For purposes

of calculating the total integrated heat load, the tail of the curves leading up to the "start"

of the entry at t = 0 (i.e. the conditions of Table 3-4) is taken into account but not shown

in the figure. Results are shown in Table 3-6.
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3.3.2.2 Scaled-up Vehicles

The SHARP vehicle can be scaled up to gain a rough idea of the characteristics of full-

size vehicles. Several aerodynamic effects (skin friction, boundary layer transition, etc.)

make it incorrect to directly apply the SHARP aerodynamic data to a larger vehicle, but

approximate results are still possible.

When scaling up a vehicle at constant density, the planform area does not rise as fast as

volume and mass. The aerodynamic surface loading thus increases with vehicle size.

The SHARP vehicle has a surface load of 160 kg/m 2 (assuming 113 kg vehicle mass),

which is rather low in comparison to typical RLV surface loads. Additional simulation

runs were made with surface loads up to and above 400 kg/m 2, close to the value for the

Space Shuttle. The results are shown in Table 3-6. Note that the aft-body heating figures

are not scaled up, but correspond to a point on the windward facing side of the vehicle 85

centimeters downstream from the leading edge.
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3.3.2.3 Trajectory Comparison and Discussion

Table 3-6 summarizes the results from the two previous sections.

The time spent on the APC and the total heat load can be reduced from the values in

Table 3-6 through some combination of banking maneuvers, following Space Shuttle

practice [STS 1998]. However, this has the drawback of increasing the maximum aft-

body heating rate since more angle of attack is needed to produce the same component of

lift to oppose gravity.

It is clear that a light surface loading is favorable in most categories. Even for Shuttle-

like surface loading, the maximum angle of attack required to stay above the APC is

about 10 degrees or roughly twice that when the vehicle is banked by 60 degrees. This

compares favorably with the 40-degree angle of attack practiced by the Space Shuttle

orbiter and demonstrates the significant advantage of the sharp leading edge.

Vehicle Mass

(kg)

Area loading

(kg/m 2)

Total time of

entry (s)

Time spent on

APC (s)

Max. aft-body 2
heating (W/cm )

Total aft-body
heat (J/cm 2)

Max. AOA

(deg)

Range

(km)

68 91 113 136 158 181 272 568

97 129 162 194 226 259 388 808

2330 2950 3480 3930 4290 4550 5230 5680

1750 2200 2470 2800 3030 3160 3500 4000

9.53 10.2 11.0 11.8 12.6 13.4 16.4 24.2

18100 24000 29600 35100 39900 44100 57700 81700

2.55 3.39 4.24 5.08 5.95 6.81 10.0 18.6

12400 15600 18500 20800 22700 24100 27900 31700

Table 3-6: Trajectory comparison
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3.3.3 Entry with High Cross Range

The SHARP vehicle can fly entries with very high cross range, as compared to current

reusable launch vehicles. (The Space Shuttle has flown a maximum cross range of 1465

km [STS 1998]). To demonstrate this and quantify the maximum cross range possible

with this geometry, an entry is performed at maximum L/D with an optimal roll angle.

Shkadov et al. [Shkadov 1975] developed an expression for the optimum roll angle to

achieve maximum lateral range, given in degrees by

(L/O)2_,_ = 45 1 -_ 3.6(L / D) 2 + 20.66

This roll angle is used until the vehicle achieves a northward ground track, at which time

the roll angle is set to zero to continue northward and finish as close as possible to the

pole.

To achieve maximum lateral range, the angle of attack is controlled for maximum L/D

unless other constraints interfere. These constraints are the APC and an altitude ceiling.

At the very beginning of the entry, the vehicle skips out of the atmosphere if o_ is

maintained at maximum L/D. To avoid this, ot must be temporarily reduced to fly at

constant altitude until the vehicle slows enough that it will not skip when a_ is set for

maximum L/D. Similarly, ot must be temporarily increased when the vehicle approaches

the APC, in order to avoid crossing under it.

The various control modes for a_ and _ are patched together manually for this entry, and

the clearest way to describe the entry is chronological. From the entry interface until t =

350, the vehicle is flown at maximum L/D and left bank. A lookup table constructed

from the NASA aerodynamic data gives the optimal _xfor maximum L/D at a given flight

condition (Mach number and dynamic pressure). At t = 350, angle of attack control is

switched to a constant altitude PID controller. This controller sets the angle of attack

negative from t = 350 to t = 990, and the vehicle is banked right during this period in

order to keep the trajectory deflected to the left of the de-orbit ground track. At t = 990

the vehicle is banked left once again as the angle of attack becomes positive. At t = 1820,
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the constant-altitude flight ends and the maximum IJD controller takes over. The vehicle

flies at maximum L/D until it meets the APC at t = 3500. The previously developed PID

controller is used to follow the APC until t = 4230, when flight at maximum L/D

resumes. At t = 4520, the vehicle achieves a northward ground track (perpendicular to

the eastward de-orbit ground track) and the left bank is zeroed out, and the entry

continues at maximum L/D until the vehicle slows below Mach 2 at t = 5600.

The entry is performed without regard for total integrated heat load. As it lasts even

longer than the high L/D entry detailed in section 3.3.1.1, TPS limitations could make

this type of trajectory infeasible, but even so the theoretical lateral range performance of

the vehicle is of interest.
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Figure 3-17: Entry profile

Figure 3-17 shows the resulting entry prof'de in velocity-altitude space. The large

oscillations are manifestations of the phugoid mode, a slow and periodic exchange

between the vehicle's potential and kinetic energies that is natural to the motion of any

aircraft. This oscillation, triggered in this case by the end of banked flight at t = 4520,

can be damped with an appropriate controller acting on the aerodynamic angles, but this
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is not attempted here as k does not interfere with the principal features of the entry. The

trajectory follows the APC for a relatively short period of 12 minutes.

Figure 3-18 shows the Earth-referenced ground path of the vehicle, which sweeps a broad

arc from an equatorial start to a finish at 55 degrees latitude north. This is the most

graphic representation of the theoretical cross-range capability of the vehicle, which can

be seen to be approximately 6100 km. This value is a lower bound, since the simulation

ends at an altitude above 25 km and a velocity of 600 m/s, giving the vehicle enough

energy to glide somewhat further.

Entry Start
(Equator)

I
North Pole Final Latitude: 55 deg.

Cross Range:
61 O0 km

.1..

Figure 3-18: Earth-referenced ground path

The angle of attack profile in Figure 3-19 most clearly shows the different segments of

the entry. After a short segment of maximum L/D flight, a_ is drastically reduced and

slowly ramped back up to maintain constant altitude as the vehicle slows enough so it

does not skip out of the atmosphere. In the next segment the vehicle is flown at

maximum IJD. In the third segment, c_ is increased to follow the APC. The PID

controller used to fly this segment causes a spike in the transition from maximum L/D

flight and gives a noisy signal, but this should not detract from the general shape of the
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profile, which follows the APC closely as can be seen in Figure 3-17. Finally, the fourth

segment is once again flown at maximum L/D, and shows small oscillations related to the

phugoid motion triggered when the vehicle is leveled.

Figure 3-20 shows the L/D ratio as a function of time for the entire entry. The maximum

near 4 once again highlights the aerodynamic efficiency of the sharp leading edge.

The optimization of a high cross range trajectory involves many parameters, and was

performed here in a logical but improvised manner as described above. More cross range

might be achievable using mildly skipping trajectories, or by doing an exhaustive

numerical optimization of the parameters. In particular, the effect of vehicle mass (and

hence surface loading) on the cross range performance is a worthwhile investigation. In

the meantime, the entry described adequately demonstrates the cross range capability of

the SHARP vehicle. Even better performance could be expected of larger vehicles,

which suffer proportionately less from viscous drag effects.

A more complete data set for this entry can be found in Appendix C.

3.3.4 Entry with Ballistic Missile Launch

One early idea for the lifting flight test of the SHARP vehicle was to launch it using an

Air Force Minuteman III missile, as was done for the SHARP-B01 flight experiment of

May 1997 when a ballistic nose tip was tested. It was hoped that the high L/D of the

vehicle would permit a pullout maneuver from the steep ballistic entry trajectory of the

missile. Using representative parameters for a Minuteman entry trajectory, the simulator

was used to determine whether the vehicle could transition from the ballistic trajectory to

a lifting trajectory, without crossing under the APC.

As seen in Figure 3-21, this is not feasible. The figure shows the trajectory of the vehicle

as it pulls out using a 20-degree angle of attack, generating the most possible lift. The

vehicle goes far below the APC and pulls out just fifteen seconds after the start of the

simulation. This trajectory would destroy the TPS and immediately rules out a ballistic

missile launch for the SHARP lifting entry mission.
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Figure 3-21: Pullout from ballistic trajectory

3.4 Summary

The trajectory simulator used NASA aerodynamic data to provide insights into the

trajectory design space for the SHARP mission. The simulator determined the

aerodynamic angle profiles required for achieving the primary mission, to enter along the

aerothermal performance constraint. Full parameter histories for high lift and low lift

entries were computed and interpreted in the context of TPS tradeoffs. The effect of

vehicle mass on key trajectory parameters was investigated. The theoretical cross range

capability of the SHARP vehicle was established. The ballistic launch system used in the

SHARP B-01 was eliminated from consideration for the lifting entry flight test. The

trajectory simulator can be used to investigate trajectory performance for any desired

entry profile; flexible model inputs (vehicle mass, aerodynamics, initial conditions,

planetary properties, atmospheric properties, etc.) give it the desired flexibility.
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CHAPTER 4: ENTRY SIMULATION, 6-DOF

The six-degree of freedom simulator described in this chapter builds on the trajectory

simulator from Chapter 3 by modeling the attitude dynamics of the vehicle. A

Newtonian model of the SHARP vehicle replaces the aerodynamic database used in

Chapter 3, which was originally computed by NASA using its HAVOC code. The

Newtonian model is verified against the NASA data and features easily configurable

control surfaces. The primary application of the 6-DOF simulator is flight control system

development, but this is not seriously attempted here. Instead, simple aerodynamic flap

controllers are developed and a short segment along the APC is flown, demonstrating that

the 6-DOF simulator is a functioning test bed for flight control system development.

4. 1 Simulator Implementation

4.1.1 Architecture

The 6-DOF simulator was built in the SIMULINK graphical environment as an extension to

the trajectory simulator. Most of the components from that simulator are reused, and

described in detail in Chapter 3.1 and Appendix B.

In addition to computing the forces on the vehicle to determine its motion, the torque on

the vehicle is computed to determine its attitude dynamics. The attitude dynamics feed

back into the force computation, for example because changing angle of attack changes

the amount of lift. To simulate these three additional degrees of freedom, a mass model

of the vehicle is developed in Appendix A.
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Thearchitectureof thesimulatoris asfollows. For agivenflight condition,aerodynamic

forcesandmomentson the vehicle(i.e. lift, drag,lateralforce, aswell asyaw,pitch and

roll moments)arecalculatedvia a new aerodynamicmodel. The modelusedfor this

purposewascheckedagainstNASA-providedaerodynamicdataspecificto the SHARP

vehiclegeometry[Kolodziej 1997]. Througha seriesof coordinatetransformationsthe

forces and momentsexperiencedby the vehicle are computed,and the equationsof

motionareadvancedin theinertial frame. Theoverallcycle isdepictedin Figure4-1.

Advance with

F = ma and T = let

 'iOtC°n'i °nl M.,_,a,#.f_...A

Transform to

Inertial Frame

Aerodynamic

Model Computation

Figure 4-1: Simulator architecture

4.1.2 Modeling Details

The NASA-provided aerodynamic database for the SHARP vehicle and used in Chapter 3

was a simple database limited to the pitch plane. In order to provide 6-DOF capability

the aerodynamic database had to be augmented or replaced. NASA was not able to

provide numerical data for motion outside of the pitch plane, and such data would still

have required aerodynamic modeling for the effects of aerodynamic control surfaces.

Even if NASA had extended the aerodynamic database to include more variables, the

numerical lookup and interpolation that is required at each step in the simulation quickly

becomes prohibitively expensive to compute. In Chapter 3 the lookup consisted of two

coefficients (CL and Co) as a function of three parameters (a, M,., q). In the case of the

6-DOF simulator one would have to lookup six coefficients (three for force, another three

for moment) as a function of ten or more parameters (or, fl, M,,, q, and one deployment

position angle for each flap). While three-dimensional lookup and interpolation is
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computationallyeasy, ten-dimensionallookup is difficult, if not impossible,from the

point of view of bothstorageandnumberof operations.

In addition,thecontrolsurfaceconfigurationof thevehicleis notdecidedat this time. A

numericaldatabasetakinginto accounttheeffectof controlsurfacepositionswouldhave

to berecomputedentirelyeachtime acontrolsurfaceconfigurationchangeis madeasthe

designevolves.

A furthercomplicationarisesfrom the higherbandwidthof the simulationparameters.

The modelmustbe computedat least five to ten times fasterthan the pitch oscillation

frequencydiscussedin Chapter2 or at a rateon the orderof 20 to 30 Hz. This figure is

roughly two ordersof magnitudefasterthan in the trajectorysimulationsof Chapter3,

andfurther increasesthecomputationalchallengeof numericallookup.

This motivatesthe developmentof a simplified aerodynamicmodelthat is bothquick to

computeandreasonablyaccurate.Thismodel isdescribedin section4.2.

The attitudedynamicsarecomputedas follows: a, fl, q, and one deployment angle for

each flap are fed into the aerodynamic model. The model output is the aerodynamic

moment as seen in the body-fixed frame. From the components of moment and the mass

properties of the vehicle, the body rates are determined. From the body rates the Euler

angles of the body-fixed frame with respect to the horizontal frame are determined. By

comparing the Euler angles of the body with the Euler angles of the wind frame, new

values of the aerodynamic angles are determined. This computation assumes the

horizontal frame is inertial, which is correct to first order.

A complete and detailed description of the 6-DOF model and its usage, as well as a walk-

through of each component, may be found in Appendix D.

4.2 SHARP Newtonian Aerodynamic Mode/

An aerodynamic model of the SHARP vehicle was constructed to replace and extend the

capabilities of the NASA-provided aerodynamic database used previously. The model
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usesNewtonianaerodynamics[Tauber1996]to computeforcesand momentsimparted

to thevehicle. Controlsurfacesare includedin themodel.

4.2.1 Geometrical Representation

For modeling purposes, the vehicle is represented as a collection of polygons that make

up a wire frame drawing as shown in Figure 4-2.

Using NASA dimensional data, the vehicle is represented as a wedge with trapezoidal top

and bottom faces and conical sides. The conical sides are each broken into six triangles

to simplify computations by generalizing curved surfaces as a collection of fiat polygons.

Six control surfaces are introduced, configured as shown in Figure 4-2. They are drawn

in a 20 ° deployed position, for geometrical clarity. The chord length of the control

surfaces is variable and can be set as a fraction of the total vehicle length. This permits

rapid reconfiguration of the model for different simulation runs.

Figure 4-2: SHARP wire frame model

NASA motivated the particular choice of six trailing edge control flaps as a flexible

configuration that would provide control authority in all axes. Pitch control is achieved

by deploying groups of three flaps on the top and bottom of the vehicle in concert. For

example, a positive steady-state angle of attack can be maintained by deploying the three

flaps on the top side of the vehicle. Yaw control is achieved by deploying opposite pairs
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of sideflaps (pairedtop andbottomoneachside). Roll control isachievedby deploying

diagonally opposed corner flaps. Carroll [Carroll 1995] describes this type of control

surface arrangement using four flaps; however, it was deemed better to design with six

flaps to provide more decoupling between axes and better control authority in yaw. Flap

actuation mechanisms for the real vehicle can be embedded in the body and act directly

on the surface rather than apply a moment at the hinge line.

Figure 4-3 is a front view of the vehicle (compare with Figure 4-2) showing the flaps

configured for the different control modes. The deployment angles shown in the figure

are arbitrarily chosen for the sake of clarity. Flap commands can be blended to achieve

simultaneous control of all three axes; this will be discussed later in this chapter.

Pitch Up Pitch Down Yaw Right Yaw Lelt Roll Left Roll Right

Figure 4-3: Flap control modes (front view)

4.2.2 Aerodynamic Computation

The aerodynamic force calculations are reduced to computations on three- and four-sided

polygons. The resulting forces and moments are expressed in the wind frame, with the x-

axis along the velocity vector and the z-axis "down" as seen in the vehicle. All that is

needed for the computation is the polygon's outward pointing normal unit vector, the

position vector of its centroid in the body frame, and the polygon's area.

To compute the force imparted to the polygon by the impinging flow, the pressure on the

surface is calculated according to Newtonian theory. The coefficient of pressure is given

as

CI, = 2 sin 2 d;

where t_is the angle between the free stream velocity vector and the plane of the polygon.

This angle is computed through a product with the outward pointing normal vector of the
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polygon. When8is zero,theflow isparallel to the surface.When t_becomes negative,

the flow appears to come from inside the body and through the surface. When this

condition arises, on the lee side of the vehicle and as a result of a polygon being

shadowed from the flow by the body, the coefficient of pressure is assumed to be zero.

The component of force due to pressure acts inwards at the centroid of the polygon, with

a magnitude of

1 pV_CpAF,,,= i

where .4 is the area of the polygon.

A fixed coefficient of friction C/approximates the effects of shearing stresses within the

boundary layer. The value of Cf is fixed at 0.004 in the simulation, a mid-range value as

shown in Figure 9 of [Kolodziej 19981. This coefficient of friction gives rise to a force

that acts at the centroid of the polygon and along the intersection of to planes: the plane

of the polygon, and the plane defined by the polygon normal vector and the free stream

vector. The magnitude of this force is

1 pV_CfA

Figure 4-4 shows the forces as seen in the plane of the velocity vector and the polygon

normal. The outward normal vector is n, and the position of the polygon centroid in the

body frame is r, and does not necessarily lie in the plane of the figure.

Polygon surface

_n ,/

V_ F_.I_
J ".*..,.

• .... °,°.. f
• .... °..

• " ............................Body CG
,."" '_ ............•

Figure 4-4: Polygon computation geometry

A sum is performed over all the polygons that describe the vehicle, to find both the total

force and total torque on the vehicle. Drag due to leading edge bluntness is added after

the sum, but is small due to the sharpness of the leading edge.
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Control surfacesare treatedlike any otherpolygon,with the exceptionthat the normal

vectorandcentroidpositionvector(asseenin thebody frame)mustbe recomputedwith

each simulation step to reflect changesin the deploymentangle as the simulation

progresses.

In a real situation,hypersoniccontrol surfaceswork inside the shock layer and cause

complexflow effects (shock interactions,boundarylayer tripping, etc.) whenthey are

deployed. Control surface design for hypersonic vehicles is a difficult problem

[Neumann1989] and predicting the pressuredistribution (and hencethe force) on a

control surfaceis not usually done well using Newtonian theory. The pressureis

typically overestimated,becausethe vehicle's nosebluntnessincreasesthe enthalpyof

the upstreamflow thusreducingpressurerecoveryat the flap surface. In the caseof

SHARPthis effect is lesspronouncedbecausethesharpleadingedgeallows flight at low

angleof attack,resultingin athin shocklayerwith relativelylessenthalpy. Theeffectof

a sharpleadingedgeon downstreampressurerecoveryhasbeen investigated[Tiwari

1992] and bearsout this effect. Newtoniantheory is thereforea reasonablebut not

perfectpredictorof thecontrol surfacepressuresin thecaseof SHARP,especiallyif the

control surfacedeployment is limited to small angles. The Newtonian model is

consideredsufficientfor thepurposeof apreliminaryanalysisof thevehicle.

A moredetaileddescriptionof themodelcomputationsmaybefoundin AppendixD.

4.2.3 Model Verification

The Newtonian model is verified against the NASA aerodynamic database by performing

several tests to ensure that the Newtonian results agree reasonably closely with the

NASA data. The NASA data, computed using a much more sophisticated code, includes

aerodynamic flow effects not captured in the simplified Newtonian model, for example

boundary layer transition. Lift, drag and pitching moment coefficients for the NASA

aerodynamic data and the Newtonian model are compared. For the Newtonian model,

the forces and moments resulting from the calculation are divided by dynamic pressure

and the appropriate reference area so that the coefficients may be compared.
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Figure4-5 showsthecomparisonof lift coefficient CL as a function of angle of attack.

For both the Newtonian model and the NASA data CL is independent of dynamic

pressure. The NASA data is plotted for several Mach numbers as indicated on the figure;

not surprisingly, the Newtonian model does not exhibit this Mach number dependence.

Also expected, the Newtonian result agrees more closely with the NASA data as Mach

number is increased. At Mach 10 CL is under-predicted by 25 to 30%. Agreement is

poor below Mach 10, or about the speed of the vehicle when the entry profile transitions

from the APC to the DPC.

0.14

0.12

0.02

Newtonian Model
(Mach independent)

0
0 1 2 3 4 5 6 7 8 9 10

Angle of attack (deg)

Figure 4-5: Lift coefficient comparison

Figure 4-6 shows the same comparison for the drag coefficient Co. In this case the

NASA data is dependent on both Mach number and dynamic pressure. The results are

therefore plotted separately for Mach 5, 10 and 20. In each plot the NASA data is plotted

at zero and 43000 N/m 2 dynamic pressure, the minimum and maximum of the flight

envelope (the upper curve corresponds to zero dynamic pressure). This establishes a

band within which the t',) is known to lie at the given Mach number. Agreement is

generally better than for CL and the Newtonian model follows the NASA data well above

Mach 10.
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Figure 4-6: Drag coefficient comparison at Mach 5, 10 and 20

Figure 4-7 shows the comparison of pitching moment coefficient C,,. It was found that in

the Newtonian model the 6",, was quite sensitive to flap angle trim. To produce the data

in Figure 4-7, all six flaps were deployed by two degrees, moving the center of pressure

back slightly. This deployment angle corresponds to the trailing edge of the flaps moving

outward by six millimeters, a small amount compared to the resolution of the wire frame

model. It is believed that the gross approximation of the aft-body geometry through a

relatively small number of polygons explains the requirement for a small amount of flap

angle trim in order to make the pitch data agree with the NASA data, which was

calculated using a finer mesh. More generally this discrepancy shows the great

sensitivity of the vehicle's pitch behavior to aft body configuration: each degree of flap

trim produces a 30% increase in the Newtonian model's C,,,. Results are shown at Mach

5, 10 and 20 and the dynamic pressure dependence of the NASA data is shown in the

same way as in Figure 4-6.

Through the comparison with the NASA aerodynamic database, the Newtonian model

displays its limitations. However, at speeds above Mach 10 and angle of attack below the

wedge angle all coefficients come reasonably close to the NASA data, with the worst

disagreement shown in Ct.. As the NASA data is insufficient to simulate lateral

dynamics and the effect of flap deployments, the limitations of the Newtonian model are

accepted for the purpose of conceptual design.
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Figure 4-7: Pitch moment coefficient comparison at Mach 5, 10 and 20

4.3 Simulator Verification

For the 6-DOF simulator no convenient comparison with an established simulator (as was

done in Chapter 3 for the trajectory simulator) was possible. The only verification

attempted was to predict the natural pitch oscillation frequency for a given dynamic

pressure and to verify if the 6-DOF simulator indeed reproduced that frequency. The

pitch oscillation frequency was predicted using the method in Chapter 2. Simulation

results, determined from a plot of angle of attack as a function of time, agreed quite well

as shown in Figure 4-8. This agreement confirms that the attitude physics are modeled

correctly. The trajectory physics remain the same as before and were verified in Chapter

3.

4.4 Simulation visualization

The results produced by the 6-DOF simulator are in the form of time histories of the

desired parameters, for example angle of attack or flap position angle. This information

can he plotted, but does not easily provide insight into the dynamical behavior of the

vehicle, as seen in Figure 4-9. When _ fl, #, and the positions of the six control flaps are
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Figure 4-8: Predicted vs. measured pitch frequency

all changing with time, understanding the behavior from a number of simple two-

dimensional plots is difficult. To better understand and interpret the simulation results, a

visualization tool was developed in MATtAB.
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Figure 4-9: Raw simulation results
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The tool displays a wire-frame drawing of the vehicle (as in Figure 4-2) and animates it.

The motion of the vehicle and its control flaps is easy to see, and the viewpoint can be

rotated at will. If the angles of the motion are small, an exaggeration factor can be added

to make the motion more obvious. The display calculations are based on the same

geometrical information underlying the Newtonian aerodynamic model, and use a series

of matrix rotations to compute the orientation of the vehicle as seen in the wind frame.

While an animation cannot be included here, Figure 4-10 shows how the plots of Figure

4-9 would appear using the visualization tool at three instants in time.
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Figure 4-10: Visualization of simulation results

4.5 Simulator Applications and Results

The 6-DOF simulator combined with the Newtonian aerodynamic model for SHARP is

demonstrated to be useful for control surfaces configuration and entry flight control

system design.

4.5.1 Control Surface Sizing

The control surface configuration shown in Figure 4-2 (six trailing edge flaps of the same

chord length) is used to investigate the effect of control flap chord length on control

authority in the pitch and yaw axes. For the purpose of demonstration, this analysis must

remain qualitative, as the Newtonian modeling does not capture some of the aerodynamic

effects that occur at the flap surface. The values given should be considered as generous
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upperbounds. Care was taken to restrict the amount of flap deployment (from the body-

flush position) to less than ten degrees to avoid gross deviations from Newtonian

behavior.

For different values of flap chord length (as a percentage of vehicle length), the

equilibrium angle of attack of the vehicle is computed as a function of control surface

deployment angle from the body-flush position. To generate a steady-state angle of

attack, the three flaps located on the topside of the vehicle are deployed simultaneously

as shown in Figure 4-3. The resulting angle of attack curves are shown in Figure 4-11.

Not surprisingly, larger flaps require less deflection for a given desired angle of attack.

The wedge angle is indicated on the figure; if this angle of attack is exceeded the top

surface of the vehicle begins shading the flaps from the free stream. In this regime the

Newtonian modeling breaks down.

2

.......---
3O% 5%

% = Percent vehicle length

0
0 1 2 3 4 5 6 7 8 9 10

Top flaps angle (deg)

Figure 4-11: Pitch control authority

Figure 4-12 shows the results of a similar analysis in the yaw axis. In this case, the two

flaps on one side of the vehicle (top and bottom) were deployed simultaneously to create

a yawing moment, as shown in Figure 4-3. For different values of flap chord length (as a
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percentageof vehiclelength),theequilibriumangleof sideslip of the vehicle is computed

as a function of control surface deployment angle from the body-flush position. The

"shade angle", indicated on the figure, is the angle at which the conical side of the vehicle

begins to be shaded from the free stream; however, this does not affect the control flaps.

% = Percent vehicle length

Shade angle
20%

10%

5%

0
0 1 2 3 4 5 6 7 8 9 10

Side flaps angle (deg)

Figure 4-12: Yaw control authority

Comparing Figure 4-12 with Figure 4-11, it is clear that the control authority in yaw is

not as great as that in pitch, for the particular control surface configuration chosen in the

Newtonian modeL This result can be explained by examining the forces acting on the

control surfaces. In the pitch case, nearly the full force exerted on the flaps contributes to

the pitching moment, because the flap normal vectors are almost perpendicular to the

pitch axis. In the yaw case, not only are two control flaps used instead of three but their

normal vectors are mostly parallel to the yaw axis so that the moment generated about

that axis is not as great.

This effect could be countered by changing the placement, number, or relative sizing of

the flaps. To increase yaw control authority additional flaps could be placed on the sides

of the vehicle, or the outboard flaps in Figure 4-2 could he moved further onto the sides
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of the vehicle. Possibly the best solution would be to make the outboard flaps slightly

larger than the top and bottom flaps, with associated benefits in roll control authority.

Roll control (achieved through the simultaneous deployment of diagonally opposed

control flaps, as shown in Figure 4-3) was not found to be a problem in simulations.

Indeed, there is no restoring moment in the roll axis as there is in pitch and yaw. This,

combined with the relatively small roll moment of inertia, causes the vehicle to accelerate

rapidly into a spin about the roll axis when the flaps are positioned accordingly.

Alternate control surface configurations were not investigated, but the modular design of

the Newtonian model of SHARP would make any changes easy to implement. To

improve on this investigation a better hypersonic flap model would be necessary.

4.5.2 Aerodynamic Angle Control

Flight control system development is another application of the 6-DOF simulator.

Developing the flight control system for a lifting entry vehicle is a difficult task that

would take many man-months of labor. The 6-DOF simulator is demonstrated to he

useful for this task with a short segrr_nt of flight along the APC using a very simple

example controller.

4.5.2.1 Controller Details

The controller assumes perfect state knowledge (altitude, velocity, aerodynamic angles)

and operates the six control surfaces so as to follow the APC. First, taking the difference

between the current altitude and the altitude corresponding to the APC results in an error

signal. From this altitude error signal a PID controller determines the commanded angle

of attack; this controller was reused directly from section 3.3.1.1. Sideslip and roll angles

are commanded to fixed values. For each of or, ,8 and ¢_,an error signal is produced from

the difference of the commanded angle and the actual angle. These three error signals are

fed into three separate PIT) controllers, each of which determines a commanded angle for

the six control surfaces. The three resulting control surface command signals are blended

by simple addition. The actuator dynamics for individual control surfaces are not

modeled; however, the control surface deployment angles are constrained between zero
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and 10° with a maximum rate of 10 degrees per second. The final control surface angle

signal is fed into the aerodynamic model. The overall architecture of the angle of attack

controller is shown in Figure 4-13. A fast inner feedback loop controls angle of attack

while a slower outer feedback loop controls altitude. The controllers for angle of sideslip

and roll angle are similar.

V_oc,_

Vot'aX Dcm'r/ca

f---..-----q

_v ne_ De=me AmuSe PID AI_ Con'coller

= =
Entry ProNe

(_ Ta_e)

Figure 4-13: Controller architecture

The control surface controller gains were determined manually, and thus subjectively, by

tuning the step response until adequate characteristics (rise time, overshoot, settling time)

were observed. Since the vehicle responds very differently depending on the dynamic

pressure, the tuning process was repeated at low and high dynamic pressures. Overall

controller gain was then adjusted based on a linear interpolation of the dynamic pressure

value. This process did not produce a good controller-such was never the intent.

However, the example controller allows a full end-to-end demonstration of the

application of the 6-DOF simulator, namely solving for the motion of the vehicle given

an aerodynamic model and a flight control system model.

4.5.2.2 Demonstration Results

For this demonstration the goal is to show the end-to-end capability of the 6-DOF

simulator by flying along the APC. Since the controller design is not refined, the

trajectory initial conditions are chosen close to the APC. The resulting trajectory data is

shown in the plots below. The entry segment lasts 20 minutes, before the angle of attack

controller experiences instability. While a full entry demonstration (along the APC and

down to Mach 10 where the aerodynamic model breaks down) would have been more
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impressive,thedemonstrationis still successful. The reader is once again reminded that

the aim was not to measure or prove controller performance.

Figure 4-14 shows the entry profile in velocity-altitude coordinates. The entry segment

lasts 1200 seconds and slows the vehicle from Mach 25 to Mach 22. Tick marks indicate

one- minute intervals.
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Figure 4-14: Entry profile

Figure 4-15 shows the altitude error in velocity-altitude coordinates, in keeping with the

representation of Figure 4-14. The data shows the vehicle following the APC within 80

meters. This good agreement is not intended as a demonstration of controller

performance, but shows the success of the end-to-end demonstration of the 6-DOF

simulator including models of the aerodynamics and flight controls.

Figure 4-16 shows the time history of the vehicle's angle of attack. The angle of attack

rises with time as in Figure 3-5. The slow oscillatory motion arises from the performance

limitations of the altitude controller, while the instability at the end of the simulation run

is due to performance limitations of the angle of attack controller.
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Figure 4-17 shows the time history of the position angle of the center flap on the top side

of the vehicle. The flap position first follows the slow oscillations in commanded angle

of attack, and begins rapid oscillation near the end when the angle of attack controller

becomes unstable. The small flap deployment angle bears out the data in Figure 4-11,

considering the flap chord length was 15% of the vehicle length.
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Figure 4-17: Flap position angle profile

The time necessary to perform the calculations was significant. The typical simulation

step size was 30 milliseconds and the aerodynamic model was recalculated at every time

step, for an overall simulation speed about ten times slower than real time. Note that the

recalculation rate (determined by the SIMULINK solver based on the specified tolerances)

is on the same order of magnitude as the simulation bandwidth determined in Chapter 2

and lends credence to that analysis. Solutions for speeding up the simulation are

discussed in Chapter 5.

The 20-minute flight along the APC successfully demonstrates all the elements that are

necessary for using simulation to support flight control development.
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4.6 Summary

The 6-DOF simulator, built up from the trajectory simulator of Chapter 3, is

demonstrated to be a useful tool for the development of the SHARP vehicle's entry flight

control systems. This end-to-end demonstration is accomplished with a Newtonian

aerodynamic model and a simple example autopilot in the simulation loop. The

Newtonian aerodynamic model of SHARP is developed for the 6-DOF simulator and

verified against the NASA-provided aerodynamic database of Chapter 3. The results are

found to agree well at Mach numbers above 10. The new model can compute the

aerodynamic forces and moments caused by sideslip; it is not limited to the pitch plane as

for the aerodynamic database of Chapter 3. Control surfaces are modeled using

Newtonian aerodynamics. While this practice is questionable, the use is justified in the

case of SHARP (until a better flap model is implemented) because of the lesser effect of

the leading edge on the downstream flow as well as the small deflection angles. The 6-

DOF simulator is verified by comparing predicted and measured natural pitch oscillation

dynamics. A visualization tool is developed to animate the dynamics of the vehicle and

better understand its motion. Control surface sizing is briefly investigated, with rough

estimates on the required sizes; a nominal six-flap configuration is analyzed. Finally, a

rudimentary entry flight controller is developed to permit an end-to-end demonstration of

the 6-DOF simulator in concert with the aerodynamic model.
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CHAPTER 5: REAL TIME SIMULATION ISSUES

The requirements for real-time simulation (for hardware in the loop development) are

briefly discussed with a focus on low-cost simulator components, since funding for this

research was limited. While real-time simulation has been performed using inexpensive

hardware [Sims 1996], it was not known ira low-cost approach would succeed when this

research began. Since the SHARP project is not yet mature enough to attempt hardware

development of the entry flight control computer (independently of whether or not a

hardware in the loop system is used), the issues explored here will become relevant only

later in the design process.

5.1 Background

Hardware in the loop (HWIL) simulation is a ground-based testing and validation method

that is intended to reduce the risk and cost of flight testing aerospace vehicles. It is

commonly used in manned and unmanned flight vehicle development programs. By

providing a synthetic environment generated in real time, HWIL systems can exercise

hardware and software subsystems under realistic conditions such as would be

encountered in a flight test. This type of testing can be useful throughout the

development of a system, from initial conceptual development to qualification and

demonstration of flight readiness.

A HWIL simulation system must interface seamlessly with the device under test. While

only an actual flight test can provide the desired environment, a properly designed HWIL

system can emulate it very closely. A generic HWlL simulation test bed, as shown in

Figure 5-1, consists of three distinct parts: the simulator that provides the synthetic
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environment,thedeviceunder test,anda suitableinterfaceto link thetwo.

every bit as important as hardware,so perhaps"hardwarein the loop"

accuratelyread"devicein the loop".
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Figure 5-1: Hardware in the loop system architecture

The abstraction boundary (above) is the abstract interface between the simulation system

and the device under test. With a good abstraction boundary the device under test cannot

distinguish between HWIL operation and real operation. In particular, the simulation and

interface must update at a rate significantly faster than the fastest dynamic of the device

under test. This makes an estimation of the system bandwidth, as performed in Chapter

2, an important first step prior to component selection for the simulator.

Since this bandwidth is not accurately known prior to building a HWlL system to

measure it, some guesswork is involved in selecting appropriate hardware and software

for the simulator and interface, based on rough estimates.

5.2 A Low-Cost HWIL System for SHARP

Hardware in the loop simulation problems were explored subject to funding constraints,

using Real Time Toolbox [Humusoft 1997] and a Data Translation DT2801 data
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acquisitionboard. The DT2801featureseight 12-bit analog inputs, sixteen digital UO

channels, and two 12-bit analog outputs. The simulation host was a personal computer

running Windows 95 on a 150 MHz Pcntium microprocessor. The DT2801 interfaces to

the computer's motherboard using the ISA bus.

For the purpose of developing the SHARP entry flight control computer, the interface

between the simulation hardware and the device under test consists of electrical signals

that travel to and from the flight computer. Simulated sensors drive the D/A outputs of

the data acquisition board, mimicking the signals that would be experienced in flight.

The flight computer outputs are fed into the A/D inputs of the data acquisition board to

drive simulated actuators. At this writing no flight computer development has been

attempted, as it is too early in the design process to do so.

Several issues arising from hardware and software limitations are addressed to evaluate

the use of low-cost equipment for future SHARP HWlL simulation.

5.2.1 Channel Limitations

The Data Translation DT2801 is equipped with only two 12-bit digital-to-analog outputs.

An entry flight control system, regardless of its exact configuration, requires more than

two sensors in order to achieve its task. While this problem could be overcome using a

more expensive data acquisition board with more output channels, the channel limitations

can be overcome with output multiplexing.

Output multiplexing consists of combining several analog signals onto one physical

channel by alternating time slices of the original signals. This scheme requires a

synchronization signal so that the multiplexed output can be properly decoded into its

component signals by external electronics. The original signals are then fed to the device

under test.

This approach was demonstrated using one analog output channel and one digital output

channel driven from a SIMUIJNK model. Three different simulated signal sources were

multiplexed and a time synchronization signal generated using SIMUt.INK blocks. The

multiplexed analog output and the synchronization signal drove the outputs of the data
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acquisitionhoard. Outsideof the simulation host, a channeldecodingcircuit was

designedaroundLF398 analogsample-and-holdintegratedcircuits. Using this circuit,

the multiplexedsignal wassplit and the threeoriginal analogsignalswere recovered.

Theoverallprocessis depictedin Figure5-2.

Multiplexed

Original
Signals

Clocked
Sample
& Hold

Circuitry

Figure 5-2: Analog output multiplexing

m

Original
Signals

Concerns with the multiplexing approach are twofold. First, in order for each of the final

decoded output signals to be driven at the frequency required by the system bandwidth, it

is necessary to multiply the frequency of computation of the simulation by a factor of

three, or however many analog signals are multiplexed together on each channel This is

because StMUL_K must sample the multiplexing blocks every time the multiplexed

signal transitions from one input to the next. Since sample times are globally determined

in SLMUt.tNK, the entire model must be recalculated at each transition. If enough

processing speed is available, this is a viable option. If not, a better acquisition hoard

(with more D/A channels) must be purchased. This tradeoff is constrained mostly by

cost. The second drawback of the multiplexing approach is that the external circuitry

must be specially designed and calibrated to retain the full 12-bit output resolution of the

acquisition hoard. Any offset voltages can introduce unwanted effects that are

propagated through the simulation. For the demonstration this was not attempted.

5.2.2 Processing Speed Limitations

The 6-DOF model used in Chapter 4 is not optimized for speed. It includes several calls

to the MATLAB workspace to run functions that compute the aerodynamic model or

interpolate the entry constraint. This considerably slows the simulation speed, as the
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MATLAB interpreter is called each time. The 30 Hz recalculation frequency that was

deemed necessary in Chapter 2 cannot be achieved with these inefficiencies, especially

when the need for multiplexing is factored in. To speed up the simulation, several

approaches are possible. These are:

1) Rewrite the function calls to MATLAB as SIMULINK S-Functions. S-Functions use a

special calling syntax that allows them to interact with the SIMULINK solver in the

same manner as other simulation blocks. When they are written in C language and

compiled, calls to the MA'n.AB interpreter become unnecessary.

2) Upgrade to a faster computer. The 150 MHz Pentium processor used in this research

is out of date as of this writing. A speed gain of a factor of three can already be had

with current PC technology, and progress continues rapidly.

3) Switch to using Real Time Workshop [MathWorks 1997], a package that can convert

a SIMULINK model to faster and more efficient code that can run native on the

processor. The switch to compiled execution (rather than interpreted execution) will

resuk in a significant speed gain.

While the above suggestions are made with the goal of achieving the speed for full

hardware in the loop simulation, an alternate strategy is suggested for future

development. Using an open loop, stimulus-response method can possibly help to test

flight hardware. Using this method the SIMULINK model could be solved off-line, thus

obviating the processing speed limitations. The stimulus response method might consist

of the following steps:

1) An initial guess of the time history of the sensor parameters is fed in real time into the

flight hardware. The flight hardware's response is recorded.

2) The recorded response is played back into an off-line (non real time) simulation of the

vehicle's environment. The hardware's response drives the simulated actuators. The

actuators affect the vehicle dynamics, and the vehicle dynamics in turn affect the

simulated sensors. The simulated sensors' outputs are recorded.
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3) The sensoroutput history is fed back in real time into the flight hardware. Once

again the flight hardware's response is recorded, and the process is iterated until it

possibly converges. (Convergence is speculative and certainly not guaranteed)

Until this approach is tested its validity or success cannot be evaluated.

5.2.3 Cost Constraints

In this research the expense for simulation hardware is quite limited. The limitations of

the simulator hardware, pointed out in the previous two sections, suggest that real time

hardware in the loop simulation is not easily done at such low cost. The tradeoffs

between hardware and software approaches for solving simulation problems are changed

according to the allowable expense. For example, increasing simulation speed through

compilation might not be as attractive as purchasing a faster computer if the budget

allows it. The total budget for hardware and software in this project was under $2000.

On the scale of an aerospace project such as SHARP, this is an insignificant amount.

While the simulation tools were shown to be useful for trajectory and vehicle dynamics

analyses in Chapters 3 and 4, the low-cost setup does not appear suitable for real time

simulation.

5.3 Summary

Hardware in the loop simulation issues were discussed with a focus on low-cost systems.

Using the Real Time Toolbox for SIMULINK and a data acquisition hoard, a simulation

interface was described. Limitations of the system (number of channels, computing

power) are thought to be avoidable through strategies such as output multiplexing or open

loop stimulus-response simulation, although these approaches were not proven. The

choice of whether to solve a problem by hardware or software (for example, software

multiplexing vs. a better data acquisition hoard) remains a tradeoff and is driven by cost.

While the prospect of effective and useful HWlL simulation appears unreachable with a

low-cost setup, it can be expected that future performance increases in hardware and

software will make it possible within a few years. In light of this, the choice of widely

used commercial products such as SIMULINK is a good one since they will almost

certainly be supported on future computer hardware. Migrating the simulation tools

71



developedin this thesisto a moreadvancedsystemwill thusbe a matterof evolution,

rather than revolution. With the cost constraintremoved,a morecapablesystemis

clearlypreferablefor HWlL simulation-baseddevelopmentof the SHARPentry flight

controlsystems.
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This thesis described the analysis of the capabilities of the SHARP high-performance

lifting atmospheric entry vehicle using custom developed numerical simulation tools.

These simulation tools arc more powerful than closed form modeling and analysis and

provide the ease of use, flexibility and extensibility necessary for rapidly gaining insight

into system-level tradeoffs. Two tools were developed, each with several variants: a

trajectory simulator, integrating a NASA-provided aerodynamic database, and a six

degree of freedom simulator, using a Newtonian aerodynamic model. These tools were

used to investigate a series of design issues facing the SHARP mission. The trajectory

simulator was used to investigate the trajectory design space, or entry flight envelope,

and the effect of entry parameters on the vehicle's aerodynamic, structural and thermal

environment. The 6-DOF simulator was used to perform a preliminary study of control

surface configuration, and showed the vehicle could be controlled to follow a designated

entry profile. This simulator is well suited to future flight control system development.

The simulation tools were delivered to NASA vehicle designers to assist further

conceptual development on the SHARP mission.

6.1.1 Trajectory Simulation

The trajectory simulator demonstrated the capability for generating atmospheric entry

trajectories for the SHARP vehicle. The simulator incorporated the vehicle model and

the planetary and atmospheric model in such a way as to make it easy to configure the
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simulator for a different vehicleor a different planet. The trajectory simulator was

verified-by comparingresultswith anotherestablishedtrajectorysimulator;theagreement

wasalmostperfect. Using the NASA-providedaerodynamicdatabasefor the SHARP

vehicle the simulatordemonstratedthe ability to generateaerodynamicangleprofiles

neededto follow a designatedentry profile. With two of the threeaerodynamicangles

determined,thesimulatorsolvedfor themissingdegreeof freedom.

In particular,the simulatorprovidedthe first quantitativelook at the range of possible

entry trajectories along the aerothermal performance constraint of the leading edge TPS.

In one case the roll angle was fixed at zero and the required angle of attack profile was

generated, while in the other the angle of attack was fixed at a high value and the required

rol angle profile was generated. These two different cases demonstrated the range of

possible entry trajectories and gave quantitative information on heating rates, structural

loads, aerodynamic angles, and many other flight parameters. The results showed a tight

coupling between trajectory choice and the environment experienced by the vehicle, and

thus proved that vehicle design choices are strongly driven by trajectory choice.

The trajectory simulation capability is required for multi-disciplinary optimization of the

SHARP vehicle design. While no formal optimization was attempted, the trajectory

simulator nonetheless demonstrated the capability for quickly producing trajectory data

subject to the variation in one parameter, the vehicle mass. This type of parameter

sensitivity study could be repeated for any other vehicle property in the model.

The trajectory simulator, built in the Simulink environment, has attributes that will make

it useful in further research on the SHARP project or in other atmospheric entry

problems. These include flexibility, ease of use, power, extensibility, and affordability.

6.1.2 6-DOF Simulation

The six-degree of freedom simulator extended the capability of the trajectory simulator

and sets the stage for flight control system development. The simulator demonstrated the

ability to solve for the six degrees of freedom of the motion of the vehicle on time scales

sufficient for an entire entry trajectory.
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To fully demonstrate the 6-DOF simulator a new aerodynamic model was necessary. The

NASA-provided aerodynamic database used in the trajectory simulator only provided the

required parameters in the pitch plane. To remove this limitation a replacement model

was developed using Newtonian theory. The SHARP vehicle was decomposed into

polygonal facets; at each simulation time step the forces and moments imparted to each

facet were recomputed. The model included movable control surfaces and was designed

so changes in the vehicle geometry (for example, control surface placement) could be

implemented easily and quickly. The Newtonian aerodynamic model was verified

against the NASA-provided aerodynamic database and showed adequate agreement in

lift, drag and pitching moment coefficients at speeds above Mach 10.

The 6-DOF simulator was augmented with a visualization tool that displays a three-

dimensional animation of the vehicle motion. The visual display was a more intuitive

way to understand the behavior of the vehicle than individual plots of the aerodynamic

angles or control surface position angles.

The 6-DOF simulator can be used to generate entry trajectory parameters based on the

aerodynamic model and a flight control system implementation. This capability was

demonstrated with several minutes of actively controlled flight along the aerothermal

performance constraint, using an example controller and assuming perfect state

knowledge. The capability for analyzing the vehicle's flight dynamics for a wide range

of conditions is valuable for the purpose of eventual flight control system development.

6.1.3 Real Time Capability

The 6-DOF simulator was designed from the outset with real time capability in mind. As

flight control system development progresses, real time simulation with hardware

functioning in the simulation loop becomes a powerful development and testing method.

Simulation system performance using an affordable personal computer proved

insufficient to achieve the desired capability. For a budget not constrained to the $2000

spent on simulator components in this research, however, much more effective options

become available for hardware in the loop simulation.
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6.2 Suggestions for Future Work

At this time the SHARP program is in early conceptual development. The requirements

for lifting entry include an active flight control system to perform guidance, navigation

and control tasks during the entry flight. This requirement alone is a major challenge

which would likely involve many engineers for a period of several years. The extent and

complexity of the development task ahead make it very easy to find further avenues of

research.

6.2.1 Trajectory Optimization

The trajectory studies performed in Chapter 3 highlighted the close coupling between

trajectory choice and vehicle parameters. The mission goal of following the aerothermal

performance constraint does not lead to a unique trajectory solution; indeed, many free

parameters remain to be optimized. As the design of the SHARP vehicle progresses,

more accurate data will become available on the consequences of certain design choices

on performance and cost. This will make it possible to perform a formal

multidisciplinary optimization, using a well-constructed objective function. Defining the

parameters of an objective function is impossible at the present point in the design

process, but will become feasible when design details become better understood. The

optimization proc..,_s will ensure the best design choices are made to achieve the mission.

6.2.2 Improved Aerodynamic Model

The Newtonian aerodynamic model developed in Chapter 4 has many limitations.

Without a good aerodynamic model the task of developing a flight control system is not

possible. Since this is one of the most promising applications of the 6-DOF simulator, an

improved aerodynamic model is a high priority. A more sophisticated aerodynamic

model would have to contend with issues of computer storage and execution since so

many parameters affect the aerodynamic coefficients of the vehicle. This is simply a

reflection of the complexity of the aerodynamic effects encountered in re-entry. In

particular, special attention should be paid to the control surface model. As mentioned in

Chapter 4, modeling hypersonic control surfaces with Newtonian aerodynamics is not
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recommendedpractice,even if the SHARPgeometryalleviatessomeof the concerns

with doingso. In general,animprovedaerodynamicsmodelshouldstriketheappropriate

balancebetweenfidelity andcomplexity.

6.2.3 Flight Control System Development

Once an improved aerodynamics model is implemented, the most interesting application

of the 6-DOF simulator is flight control system development. SIMULINK is a powerful

tool for the task and controller designs could very easily be integrated and tested with the

simulator. Since the vehicle's response depends on its environment, this task amounts to

more than adjusting a few gains. Several references provide insight into the shuttle

orbiter entry flight control design [JSC 1973, Graves 1978, Kafer 1983] and would

provide a good starting point for attacking the problem. The flight control system would

have to tolerate uncertainties in state estimation and in aerodynamic modeling, while still

achieving the mission goal of following the designated entry flight profile as closely as

possible. Measuring the effect of parameter variations on trajectory performance metrics

can test this robustness.

6.2.4 Hardware Development

As the flight control system design progresses, simulation tools can be used to begin

hardware development. The 6-DOF simulator could be extended with external hardware

and software interfaces specific to the hardware configuration of the flight computer.

Using these interfaces the code could be tested in closed loop with the simulator

providing a synthetic environment. Pre-flight hardware in the loop testing of flight

software using a simulated environment is a standard phase for any flight system that is

difficult or expensive to test in flight, but itself need not be costly. Flight code validation

using simulation has been applied using inexpensive computers and hardware interfaces

[Sims 1996]. With the rapid progress of computer technology, the approach promises to

be more and more accessible.
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APPENDIX A: SHARP VEHICLE PARAMETERS

A. 1 Geometry

The SHARP vehicle is wedge-shaped, with conical sides and a sharp leading edge.

Hankcy originallyinvestigatedthisclass of hypersonic liftingvehicle shapes, which

explainswhy SHARP issometimes referredto as a "Hankey wedge" [Kolodzicj 1998].

A few key physicaldimensions areindicatedinthe drawings below.
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Figure A-I: SHARP vehicle geometry
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Thewife-flamedrawingat the centerof FigureA-1 isa moreref'medconfigurationthan

whatappearsin thedimensioneddrawings.Aerodynamiccontrolsurfacesarenot shown

in thedrawingbecausetheir configurationis notuniquelyspecified.

For furtherdescriptionof thevehicle,weadopta bodyaxessystemwith its origin at the

vehicle'scenterof gravity. Thex-axis is taken along the length of the vehicle (from back

to front), the y-axis along its width (from left to right) and the z-axis downward (from top

to bottom).

A.2 Mass Properties

The mass M of the ,/,chicle was assumed to be 113.4 kg (250 lbs.) unless otherwise

specified. The center of gravity location, of great importance to the aerodynamic stability

of the vehicle, was set at 50% of the vehicle length, in the center of the body, unless

otherwise specified. The moments of inertia, which factor into the attitude dynamics of

the vehicle, were computed approximately based on the mass and geometry. For this

purpose the geometry was simplified to an isosceles triangular prism with h = 0.337 rm L

= 1.71 m, and w - 0.381 rn, as shown in Figure A-2.

Figure A-2: Simplified wedge geometry

A.2.1 Mass Distribution

The prism was split into two pieces of length U2, each with homogeneous density, with

the total mass distributed so as to place the center of gravity of the entire wedge at one-

half its length. (With a completely homogeneous wedge the CG would he two-thirds of

the way hack.) Let ml and m2 he the respective masses of the front and back halves of the

wedge, with mt+ m2 = M. Their densities ,ol and ,o2 are then:
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8_ 8m,
pl=--, p2=--- .

Lwh 3Lwh

We then balance the moments of the front and back about the CG by solving

IpLxdV = Ip,.xdV,
front back

giving mL = 5M/8 and m2 = 3M/8. This mass distribution ensures the center of gravity is

located exactly as desired. Knowing the mass distribution we may go on to calculate the

moments of inertia.

A.2.2 Moments of Inertia

The moments of inertia were calculated from the standard formulas. For a wedge as in

Figure A-2, simple algebra starting from the formula for the moment of inertia of a slab

about its CG and using the parallel-axis theorem yields the following principal moments

of inertia:

-M(L_+w2"] =M(LZ +-4 -- 12_, 2lY'_- 6(3 2)' l,i+n 6[ 3 , I,,_,=

To account for the distribution of mass as calculated above, we use the parallel axis

theorem to determine the principal moments of overall configuration.

Axis Formula Value (kg.m z)

Yaw (z)

Pitch (y)

Roll (x)

M eL 2 W 2"_

I_ 4 4 3

M rL2 h 2 '

ly 8 2 3

22.1

21.2

1.82

Table A-l: SHARP inertia properties
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APPENDIX B:

TRAJECTORY SIMULATOR DESCRIPTION

B. I Mode/Block Diagram

The description of the block diagram for the trajectory simulator refers to Figure B- 1. In

the figure each block is labeled with a number. The blocks are described in the order of

their numbers. They are all SIMUHNK "subsystems" in that they each contain more sub-

blocks. For the purpose of the description the different levels are not explained to the last

detail, as the model includes hundreds of elementary SIMULINK blocks.

The block diagram here is one particular configuration of the trajectory simulator,

showing a controller for the angle of attack. This configuration is not unique, as either or

both of angle of attack and roll angle can be controlled from other parameters in the

model. The model is easily modified to suit the problem being investigated; for each of

the sections in Chapter 3, different configurations were used.

All blocks sending simulation data to the MATLAB workspace have been deleted for

clarity.

For additional details the reader is referred to the actual SIMULINK files; these are

available from the archives of the Space Systems Development Laboratory at Stanford

University.
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B.2 Block Descriptions

1) Inertial Frame: This block is where the motion of the vehicle is integrated. The

input of the block is the acceleration of the vehicle in the inertial frame. Inside this

block, this signal is integrated twice to produce the velocity and position in inertial

space. Both integrators have their initial condition set by block 15, Trajectory

Initialization. The integration scheme is 4 th order Runge-Kutta with adaptive time

step, built into SnvtUt_K. The relative tolerance is 10e-3 and the absolute tolerance is

10e-6.

2-) Airspeed: This block computes the free stream velocity vector in the wind frame and

the position vector in the earth frame. The earth frame rotates with the earth rather

than being fixed in inertial space. The position vector in the earth frame is useful for

plotting trajectories as seen from the surface of the earth. It also allows comparison

with the inertial posifion vector to see the effect of earth rotation on the trajectory

(Coriolis effect). The free stream velocity vector is computed by subtracting the cross

product of earth's angular rotation vector and the position vector from the inertial

velocity vector.

3) Lat, Lon, Alt: This block computes the latitude, longitude and altitude of the

vehicle. The latitude and longitude are calculated for the purpose of rotations later in

the model, and are inertial-referenced, as opposed to the conventional earth-

referenced definition. The sine and cosine of both angles are passed along to the

earth angle output to avoid redundant recomputation of these quantities further

downstream. The altitude of the vehicle is computed by subtracting the local earth

radius (the earth being modeled as an oblate spheroid) from the magnitude of the

position vector. The magnitude of the position vector is also passed along, for

computing the acceleration of gravity.

4) Trajectory Angles: This block computes the Euler angles of the wind frame with

respect to the locally horizontal frame. This includes the heading angle and the
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5)

6)

7)

8)

9)

trajectory angle (the angle that the velocity vector makes from horizontal.) The roll

angle (defined as roll around the velocity vector) is also included, and is fed in via

either a constant input (as shown in the block diagram) or by a controller similar to

the one of blocks I 1 and 12. All angles are passed along with their sine and cosine to

avoid redundant computation further downstream.

Gravity: This block computes the acceleration due to gravity based on the distance

of the vehicle from the center of the earth. There is no high order gravitational field

model but this could be included as a future improvement.

Free Stream Conditions: This block takes the altitude and the velocity of the

vehicle, and computes the free stream Mach number and dynamic pressure. Dynamic

pressure is determined by a table lookup of density (based on the U.S. Standard

Atmosphere). Mach number is determined by dividing the free stream velocity by the

sound speed, also determined by table lookup from the atmospheric model.

Aerodynamic Model: This block implements the aerodynamic model for SHARP,

based on the database computed by NASA. Any other aerodynamic database can be

substituted. The database takes three inputs (angle of attack, Math number and

dynamic pressure) and computes lit_ and drag coefficients. This feature is

implemented using calls to the MATI.AB function "interp3" which performs three-

dimensional interpolation of the three-dimensional matrix of aerodynamic data. The

coefficients are combined with the vehicle mass and reference area and passed along

in the same form as the familiar ballistic coefficient. Three values are passed to the

output: one for lift, one for drag and one for side force. The side force is defined to

be zero.

Aero Forces (wind frame): This block takes the values passed by the aerodynamic

model and computes the acceleration due to aerodynamic forces experienced by the

vehicle in the wind frame. This is done by simply multiplying by the dynamic

pressure and forming the output vector in the wind fi'ame.

Wind to Horizontal Rotation: This block takes the Euler angles of the wind frame

and transforms the acceleration vector to the horizontal frame using the usual rotation
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matrices. This transformation is accurate since the relative angular velocity of the

two frames is always small enough to be negligible.

10) Horizontal to Inertial Rotation: After adding gravity, the input of this block is the

net acceleration on the vehicle from gravity and aerodynamic forces. Using the usual

rotation matrices the vector is transformed to the inertial frame. This transformation

is accurate since the relative angular velocity of the two frames is always small

enough to be negligible.

11) Aerothermal Performance Constraint: This block is specific to the configuration

of the trajectory simulator as shown in Figure B- I. In this configuration the angle of

attack of the vehicle is controlled so the vehicle follows its aerothermal performance

constraint. Alternately this could be any flight profile and not just the APC. The

block computes the altitude error by doing a table lookup of velocity to find the

altitude corresponding to the APC. This value is then subtracted from the actual

altitude of the vehicle to form the error signal.

12)ControUer. This block is a PIE) controller which determines the correct angle of

attack for staying on the APC (or on whichever trajectory is desired, according to

block 11). The output angle of attack is fed directly into the aerodynamic model.

There is no modeling of the vehicle's pitch dynamics.

13) TPS Heating: This block uses the flight conditions to compute aerodynamic heating

rate and temperature on the at_-body TPS of the vehicle. Radiation equilibrium is

assumed, so that input heat rate determines surface temperature. Both quantities are

computed using the empirical relations for a flat plate as derived by Tauber [Tauber

1997]. Since beating rate and temperature depend on each other (a situation denoted

as "algebraic loop" in SIMULINK) a special algebraic constraint block must he used.

14) Planet Initialization: This block allows the user to specify the characteristics of the

planet on which the entry is done. These characteristics include polar radius,

equatorial radius, rotation rate and mass. Planets other than earth can easily be

specified as long as the atmospheric model (embedded in block 6) is also changed.

One interesting investigation using this block is to vary the earth's rotation rate.
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15)Trajectory Initialization: This block allows theuserto specifythe trajectoryinitial

conditionsin a familiar form. The latitude,longitude,altitude,headingangle,entry

angleandspeedcanbechangedat will. Theblock thenusesthesequantities(andthe

inputsof block 14)to computethe initial velocityandpositionvectorsin the inertial

flame. Thesevectorsarethenusedasinitial conditionsfor the integratorsinblock 1.

B.3 User's Guide

To use the simulator, follow these steps:

1) Launch MATLAB

2) Type 'simulink' at the prompt

3) From the SIMUHNK File menu, select the model to be opened

4) In MATLAa, run 'sharpinit.m'. This file creates all the variables necessary for the

aerodynamic database interpolation.

5) In MATLAB, run the m-file that specifies the entry profile to be flown (if applicable)

6) By clicking on the appropriate blocks, enter the desired planetary characteristics and

trajectory start conditions.

7) Place all the 'To Workspace' blocks required for collecting data to the MATLAB

workspace.

8) From the Simulation menu in SIMUHNIC, select the stop time, the integration method

and the solver tolerances.

9) From the Simulation menu, select 'Start'.

10) Monitor simulation progress by clicking on the 'clock' block.

11)When simulation ends, display and analyze data using MATLAB plotting functions.

Useful m-f'des include 'plotape.m' for plotting the aerothermal performance

constraint and 'earth3.m' for displaying a three dimensional plot of the earth for

trajectory plotting.
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APPENDIX C: TRAJECTORY SIMULATION DATA

The data in the following pages is referred to from Chapter 3. Three different trajectories

are logged, all originating from a 400-kin circular equatorial orbit after the vehicle

performs a 98.5 m/s de-orbit burn. The entry interface is taken to be at 100-km altitude

and the simulation ends when vehicle slows below Mach 2.

C. I Data Key

The data tables C-2, C-3 and C-4 in the next few pages have each column headed with a

symbol. The meaning of the symbols is detailed in Table C-1 below.

Symbol unit
t s

h m

v m/s

a m/s 2

ax,y_ m/s 2
M

q N/m 2

deg

T deg

deg

a deg

Co

CL

r m

I m

T K

c W/m 2

Description

Elapsed time since entry interface
Altitude above surface of oblate earth

Free-stream velocity

Acceleration in wind axes, magnitude

Components of a
Free-stream Mach number

Free-stream dynamic pressure

Heading angle

Flight path angle

Roll angle

Angle-of-attack

Drag coefficient
Lift coefficient

Range (along ground track)

Lateral range (from original ground track)

Aft-body temperature

Aft-body heating rate

Table C-I: Symbol key
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APPENDIX D: 6-DOF SIMULATOR DESCRIPTION

D. I Mode/Block Diagram

The description of the block diagram for the trajectory simulator refers to Figure D- 1. In

the figure each block is labeled with a number. The blocks are described in the order of

their numbers. They are all SIMUI.INK "subsystems" in that they each contain more sub-

blocks. For the purpose of the description the different levels are not explained to the last

detail, as the model includes about six hundred elementary SIMULINK blocks.

The blocks reused from the trajectory simulator are not numbered or described. For

information on these blocks refer to Appendix B.

All blocks sending simulation data to the MATLAB workspace have been deleted for

clarity.

For additional details the reader is referred to the actual SIMULINK files; these are

available from the archives of the Space Systems Development Laboratory at Stm'tford

University.
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D.2 Block Descriptions

1) Newtonian SHARP: This block computes the aerodynamic forces and moments

experienced by the SHARP vehicle using the Newtonian model described in Chapter

4. The Newtonian model is recomputed at each sLmu!ation step using calls to the

MATLAB function 'newtonsharp.m'. This file is further described in section D.3. The

input to the MATLAB call requires dynamic pressure, angle of attack, angle of sideslip,

and the six flap position angles. The output is the force on the vehicle (in the wind

frame) as well as the moment (in the body frame). The force is divided by mass so

that acceleration is passed to the 'Wind to Horizontal Rotation' block as before.

2) Body Rates: This block uses the moment (in the body frame) to produce the body

rotation rates p, q and r (about the body axes). With the principal axes of the vehicie

aligned with the body axes, the rates are computed according to the following

equations:

3)

p

Tx -(I z -ly)qr

[y

Tz -(ly -I x)pq

[7.

The three equations are solved by taking the rates, the body moments and the inertia

properties. The resulting dotted quantities are integrated to find p, q and r, and fed

back into the computation. The inte_ator initial condition is cpecified in the

simulation initial conditions as initial yaw, pitch and roll rates.

Body Euler Angles: This block calculates the Euler angles of the body frame with

respect to the horizontal frame. The Euler angles are combined with p, q and r to f'md

the rate of change of the Euler angles according to the kinematic relation:
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0 sine cos# 1]
I1 tan?'sin# tanrcos#lL,J

The angles in this relation axe the body Euler angles and should not be confused with

the wind flame Euier angles, which axe denoted by the same symbols. The resulting

Euler angle rates are inte_ated to solve for the Euler angles themselves, and fed back

into the calculation. The initial value of the Euler angles is computed by the m-file

that initializes the simulation, based on user-specified values of the aerodynamic

angles.

4) Aero Angles: This block compares the body frame Euler angles with the wind frame

Euler angle_ to compute the mlgle of attack and the ialgle of side_lip. The

computation is a _ries of rotation matrix multiplications, with the key relation

5)

where each quantity between brackets is a 3x3 rotation matrix by the specified angle

about the specified axis (x, y or z). The body frame Euler angles axe distinguished

from the wind frame Euler angles by the subscript B. The angle of attack and the

angle of sideslip can be extracted from the left-hand side through the inverse sine of

the appropriate matrix elements.

Constraint: This block is the same as was used in Appendix B, computing the

altitude error from the APC.

6)

J)

Alpha Controller: This block is the same as was used in Appendix B, computing a

cotmuand augle of attack "based on the altitude error. This PID controller forms the

slow feedback Mop around the autopilot's (described next) fast feedback loop.

Autopilot: This block takes aerodynaaaic angle conuuands and conkoutes the proper

position for each of the six aerodynamic control surfaces so as to achieve the desired

angles. The autopilot is made of three separate PID controllers. Each of them first

computes an error signal from the difference of the commanded angle and the true
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angle (perfect state knowledge is assumed in this case). This error is then fed into a

PIDcontroller which outputs a relative position angle. The relative position angle is

then fed through the flap logic (which flaps to deploy for what resulting motion, as

depicted in Figure 4-3). The three relative flap position commands coming from each

of the three controllers are "added together to compute the net position command.

This position command is then fed through a simple model of the flap dynamics,

limiting the flap position between 0 and 10 de_ees and the flap position rate to 10

degrees per second. This rate limit introduces strongly non-linear dynamics; the

lower it is set, the less linear is the response to a sinusoidal excitation of the angle

command. For more information on the motivation for this controller design, refer to

Chapter 4.

D.3 Flies for Newtonlan Model

Several MATLaa m-fries support the computation of the Newtonian aerodynamic model

These are briefly outlined here.

1) sharpgeom.m: This file initializes the geometry of the vehicle by specifying the

nodes of the wire frame model as seen in the body frame (with the origin at 50% of

the length of the vehicle). It also defines the variable 's6flapfraction' which

determines the flap chord length as a fraction of vehicle length. This is set to 0.15 by

default.

2) flapconflgure.m: This file prepares all the geometric data for the Newtonian model

from the information specified in the previous file. The nodes of the wire frame

model that depend on the flap dimensions are computed first. These consist of all the

nodes in the vicinity of the flap hinge line. Next, the polygon connectivity is defined

(the nodes are grouped together to form each facet of the model). The normals and

centroids of each polygon, referred to the body frame, are computed using

'centroidnormal.m' described next. For the purpose of recomputing the centroid and

normal of each flap polygon the hinge line vectors as well as the hinge line centers

are computed for each flap. The properties of each flap polygon change at each

simulation step according to flap position.
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3) centroldnormal.m: This file takes an input of three or four nodes enumerated in

counterclockwise order and computes the centroid and normal of the resulting

triangle or trapezoid. Since all of the elements of the Newtonian model of SH.M_.P

have either three or four nodes, this is sufficient to compute all facets of the model.

The function is based on simple vector algebra which is not detailed here.

4) newtonsharp.m: This file co_rkoutes the three (in the wind flame) and moment (in

the body frame) on the vehicle, based on inputs of angle of attack, angle of sideslip,

dynamic pressure, and flap positions. Based on the aerodynamic angles, three unit

basis vectors of the body frame are computed as seen in the wind frame. This is so

that three calculations may be specified in the wind frame. Next, the force and

moment arising from the parts of the vehicle that do not change in tirne (i.e.

everything except the flaps) are added up, with the function 'computepolygon.m'

being called for each polygon. Next, for each of the six flaps and based on the

position angles the centroid and normal of each flap is recomputed betbre adding

their contribution to the total force and moment using 'computepolygon.m' as before.

5) computepolygon.m: This file takes as inputs the normal and centroid of a polygon

as seen in the body frame, and the basis of the body frame as seen from the wind

frame. This file is where the Newtonian aerodynamics come into play. According to

the description in Chapter 4, a normal force and a tangential force are computed and

added to give the net force. The tangential force is determined by the coefficient of

friction, specified in this file. The net force vector is projected onto the basis so the

result is in wind coordinates. The moment of the two force components about the

__dy frame origin is also computed.

6) flndangles.m: This file performs the matrix rotations and operations detailed in the

description of block 4 (aero angles) and finds the angle of attack and the angle of

sideslip.

7) animate.m: This file is used to animate the simulation results as described in

Chapter 4. An animation time step can be set in this file. The aerodynamic angles,

output time vector and flap position angles are interpolated to create a regular time

spacing. These resampled vectors are then used for the 'animation. At each step the

vehicle and the six flaps are displayed using the appropriate rotations, achieved
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8)

9)

through matrix algebra. The flaps are treated differently as the distal nodes of the

polygons (away from the hinge line) must be re,computed for proper display. This is

done using vector algebra, and is not detailed here. The animation fimction allows

the inclusion of an exaggeration factor so that small motion of the flaps becorr_s

more obvious. Since the vehicle is flown using very small flap deployments this

feature is almost always used. The exaggeration factor can be set in the file.

s41nlt.m: This file initializes all the parameters used in the model. This represents a

change from the trajectory simulator, where the parameters were specified through

input dialogs on masked SIMULINK blocks. This time the variables are changed using

a custom programmed graphical user interface in MAtt..a_. The interface, described

next, operates on the variables defined in this file. The SIMUI..LNK model then

retrieves the parameters as needed from the MATLAB workspace.

sharpslm.m: This file implements the graphical user interface where the user can

select the parameters for the simu 'lation. When this file is run three buttons appear in

a separate window. The lit'st brings up a dialog to set planetary characteristics as in

the trajectory simulator. The second brings up a dialog to set the trajectory initial

conditions, twelve of them for six degrees of freedom. These include speed, altitude,

latitude, longitude, heading angle, entry angle, angle of attack, angle of sideslip, roll

angle, yaw rate, pitch rate and roll rate. Finally, the third brings up a dialog to set the

vehicle parameters such as inertia properties and mass.

D.4 User's Guide

To use the 6-DOF simulator, follow these steps:

I) Launch MATLAB

2) Type 'simulink' at the prompt

3) From the SIMULINK File menu, select the model to he opened (e.g. sharp7.mdl)

4) In MATLAB, run 'sharpgeom.m'. This file creates the vehicle geometry. Then specify

the variable 's6flapfracdon' to set the flap size. Next, run 'flapeonfigure.m" to

compute the vehicle geometry for use in the Newtonian model routines. Call
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's4init.m' to initialize simulationvariables,andthencall 'sharpsim.m'to bringup the

dialog window wheresimulationparameterscanbesetandmodified.

5) In MATLAB,run them-file that specifies the entry profile to be flown (if applicable)

6) Using the appropriate dialogs, enter the desired planetary characteristics, trajectory

start conditions, and vehicle parameters.

7) Place all the 'To Workspace' blocks required for collecting data to the MATLA8

workspace. 'Scope' blocks may be places to monitor tile value of ally paraineter

while the qirnulatinn executes.

8) From the Simulation menu in SIMULINK, select the stop time, the integration method

and the solver tolerances.

9) From the Simulation menu, select 'Start'.

10) Monitor simulation progress by clicking on the 'clock' block.

l l)When simulation ends, display and analyze data using MATLAB plotting functions.

Useful m-files include 'plotapc.m' for plotting the aerothermal performance

constraint and 'earth3.m' for displaying a three dimensional plot of the earth for

trajectory plotting. Use 'animate.re' to gain a better understanding of the attitude

dynamics.
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